精英家教网 > 高中数学 > 题目详情
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.

(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围.
(Ⅰ); (Ⅱ)[).

试题分析:(Ⅰ)由题意比例关系先求c,再由离心率求a,从而可求椭圆的方程;(Ⅱ)分直线AB斜率是否存在两种情况讨论:(1)当直线AB垂直于x轴时,易求;(2)当直线AB不垂直于x轴时,先设直线AB的斜率,点M、A、B的坐标,把点A、B坐标代入椭圆方程求k、m之间的关系,再求PQ直线方程,然后与椭圆方程联立方程组,由韦达定理求的表达式,最后求其范围.
试题解析:(Ⅰ) 设F2(c,0),则,所以c=1.
因为离心率e=,所以a=
所以椭圆C的方程为.                     6分

(Ⅱ)当直线AB垂直于x轴时,直线AB方程为x=-,此时P(,0)、Q(,0)

当直线AB不垂直于x轴时,设直线AB的斜率为k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
 得(x1+x2)+2(y1+y2)=0,则-1+4mk=0,故k=
此时,直线PQ斜率为,PQ的直线方程为.即
联立 消去y,整理得
所以
于是(x1-1)(x2-1)+y1y2


令t=1+32m2,1<t<29,则
又1<t<29,所以
综上,的取值范围为[). 15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中到直线的距离;②
(1) 求曲线的方程;
(2) 若存在直线与曲线、椭圆均相切于同一点,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中,点A、B的坐标分别为,点C在x轴上方。
(1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程;
(2)过点P(m,0)作倾角为的直线交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

)如图,椭圆为椭圆的顶点

(Ⅰ)若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆方程;
(Ⅱ)已知:直线相交于两点(不是椭圆的左右顶点),并满足 试研究:直线是否过定点? 若过定点,请求出定点坐标,若不过定点,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若
(Ⅰ)求此椭圆的方程;
(Ⅱ)直线与椭圆交于两点,若弦的中点为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,若焦点在轴上的椭圆 过点,且其长轴长等于圆的直径.
(1)求椭圆的方程;
(2)过点作两条互相垂直的直线与圆交于两点,交椭圆于另一点,设直线的斜率为,求弦长;
(3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,若椭圆的右顶点为圆的圆心,离心率为.
(1)求椭圆的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

同步练习册答案