精英家教网 > 高中数学 > 题目详情
已知分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若
(Ⅰ)求此椭圆的方程;
(Ⅱ)直线与椭圆交于两点,若弦的中点为,求直线的方程.
(Ⅰ);(Ⅱ)

试题分析:(Ⅰ)求此椭圆的方程,由题意到上顶点的距离为2,即,再由,即可求出,从而得椭圆的方程;(Ⅱ)直线与椭圆交于两点,若弦的中点为,求直线的方程,可采用设而不求的方法,即设,将代入椭圆方程,两式作差即可得直线的斜率,再由点斜式写出直线方程.
试题解析:(Ⅰ)由题意得所以
(Ⅱ)设
AB:,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆过定点,圆心在抛物线上,为圆轴的交点.
(1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论.
(3)当圆心在抛物线上运动时,记,求的最大值,并求出此时圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.

(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知定点,动点N满足(O为坐标原点),,求点P的轨迹方程.

(2)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(ⅰ)设直线的斜率分别为,求证:为定值;
(ⅱ)当点运动时,以为直径的圆是否经过定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知的顶点在椭圆上,在直线上,且
(1)当边通过坐标原点时,求的长及的面积;
(2)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过的直线与椭圆交于两点,问在椭圆上是否存在一点,使四边形为平行四边形,若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的离心率为,右准线方程为,
(1)求双曲线C的方程;
(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在以双曲线C的实轴长为直径的圆上,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线焦点的弦,过两点分别作其准线的垂线,垂足分别为倾斜角为,若,则
.②
, ④ ⑤
其中结论正确的序号为                

查看答案和解析>>

同步练习册答案