精英家教网 > 高中数学 > 题目详情
已知椭圆的焦点为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过的直线与椭圆交于两点,问在椭圆上是否存在一点,使四边形为平行四边形,若存在,求出直线的方程,若不存在,请说明理由.
(Ⅰ)椭圆的方程为;(Ⅱ)存在符合条件的直线的方程为:

试题分析:(Ⅰ)已知椭圆的焦点为,且经过点,求椭圆的方程,显然,而正好是过焦点,且垂直于轴的弦的端点,故,再由,解出即可;(Ⅱ)设过的直线与椭圆交于两点,问在椭圆上是否存在一点,使四边形为平行四边形,若存在,求出直线的方程,若不存在,请说明理由,此题是探索性命题,一般都是假设存在符合条件的点,根据题意,若能求出直线的方程,就存在,若不能求出直线的方程,就不存在,此题设直线的方程为,代入方程得的中点为 , 由于四边形为平行四边形,的中点重合,得点坐标,代入椭圆方程求出的值,从而得存在符合条件的直线的方程为:
试题解析:(Ⅰ)                       3分
,                                       5分
 椭圆的方程为                         7分
(Ⅱ)假设存在符合条件的点,
设直线的方程为                          8分
得:

的中点为                   10分
四边形为平行四边形,的中点重合,即:
                             13分
把点坐标代入椭圆的方程得:
解得                                         14分
存在符合条件的直线的方程为:       15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若
(Ⅰ)求此椭圆的方程;
(Ⅱ)直线与椭圆交于两点,若弦的中点为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(1)如果直线l过抛物线的焦点,求·的值;
(2)如果·=-4,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,若焦点在轴上的椭圆 过点,且其长轴长等于圆的直径.
(1)求椭圆的方程;
(2)过点作两条互相垂直的直线与圆交于两点,交椭圆于另一点,设直线的斜率为,求弦长;
(3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆是其左右焦点,离心率为,且经过点.
(1)求椭圆的标准方程;
(2)若分别是椭圆长轴的左右端点,为椭圆上动点,设直线斜率为,且,求直线斜率的取值范围;
(3)若为椭圆上动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中,.若以为焦点的椭圆经过点,则该椭圆的离心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于四点,则四边形面积的最大值与最小值之差为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案