精英家教网 > 高中数学 > 题目详情
过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于四点,则四边形面积的最大值与最小值之差为(   )
A.B.C.D.
B

试题分析:当轴时,此时(通径),面积取最大值为;当两条直线斜率都存在时,设直线的方程为,与椭圆联立后得:,设,则

同理,所以
因为,所以,因而,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过的直线与椭圆交于两点,问在椭圆上是否存在一点,使四边形为平行四边形,若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

矩形的中心在坐标原点,边轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线,,的交点依次为.

(1)以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段等分点从左向右依次为,线段等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点
(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,

(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线与x轴围成一个等腰三角形,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,圆,动圆与已知两圆都外切.
(1)求动圆的圆心的轨迹的方程;
(2)直线与点的轨迹交于不同的两点的中垂线与轴交于点,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是椭圆上一点,分别为的左右焦点的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,过点作直线,交椭圆异于两点,直线的斜率分别为,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线C:的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若,求线段中点M的轨迹方程;
(2)若直线AB的方向向量为,当焦点为时,求的面积;
(3)若M是抛物线C准线上的点,求证:直线的斜率成等差数列.

查看答案和解析>>

同步练习册答案