精英家教网 > 高中数学 > 题目详情
如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,

(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线与x轴围成一个等腰三角形,说明理由.
(1);(2);(3)详见解析

试题分析:直线和圆锥曲线位置关系问题,一般要将直线方程和圆锥曲线方程联立,同时要注意其隐含条件(),得关于某一个未知数的一元二次方程,利用韦达定理建立参数的等量关系或者不等关系,从而确定参数的值或者取值范围,(1)由椭圆焦点在轴,先设椭圆标准方程为,由已知得关于 的方程组,解;(2)注意条件“平行于的直线交椭圆与两点”,设直线方程为y=x+m,与椭圆联立,得关于的一元二次方程,,得的取值范围(注意);(3)只需证明斜率互为相反数先设,则,,结合韦达定理证明
试题解析:(1)设椭圆方程为(a>b>0)
    ∴椭圆方程
(2)∵直线∥DM且在y轴上的截距为m,∴y=x+m

与椭圆交于A、B两点∴△=(2m)2-4(2m2-4)>0-2<m<2(m≠0);
(3)设直线MA、MB斜率分别为k1,k2,则只要证:k1+k2=0
设A(x1,y1),B(x2,y2),则k1=,k2=
由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4
而k1+k2=+=(*)
又y1=x1+m  y2=x2+m
∴(*)分子=(x1+m-1)(x2-2)+(x2+m-1)(x1-2)
=x1x2+(m-2)(x1+x2)-4(m-1)
=2m2-4+(m-2)(-m)-4(m-1)=0
∴k1+k2=0,证之.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆,若焦点在轴上的椭圆 过点,且其长轴长等于圆的直径.
(1)求椭圆的方程;
(2)过点作两条互相垂直的直线与圆交于两点,交椭圆于另一点,设直线的斜率为,求弦长;
(3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,若椭圆的右顶点为圆的圆心,离心率为.
(1)求椭圆的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,点为动点,分别为椭圆的左、右焦点.已知为等腰三角形.

(1)求椭圆的离心率
(2)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹
方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,)。
(I)求椭圆C的方程;
(II)过P点分别以为斜率的直线分别交椭圆C于A,B,M,N,求证: 使得

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设轴交于点,不同的两点上(也不重合),且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于四点,则四边形面积的最大值与最小值之差为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1,F2是双曲线的左、右焦点,过左焦点F1的直线与双曲线C的左、右两支分别交于A,B两点,若,则双曲线的离心率是(   )
A.B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点,动点到定点距离与到定点的距离的比值是.
(Ⅰ)求动点的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当时,记动点的轨迹为曲线.
①若是圆上任意一点,过作曲线的切线,切点是,求的取值范围;
②已知是曲线上不同的两点,对于定点,有.试问无论两点的位置怎样,直线能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

同步练习册答案