精英家教网 > 高中数学 > 题目详情
F1,F2是双曲线的左、右焦点,过左焦点F1的直线与双曲线C的左、右两支分别交于A,B两点,若,则双曲线的离心率是(   )
A.B.C.2D.
A

试题分析:,令
,由双曲线的定义
,即
由勾股定理知,,求得(负值舍去),故.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,

(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线与x轴围成一个等腰三角形,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是椭圆上一点,分别为的左右焦点的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,过点作直线,交椭圆异于两点,直线的斜率分别为,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (t为参数,0<a<),曲线C的极坐标方程为
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线(p>0)的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为(     )  
A.B.2C.+1D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的左焦点作圆: 的两条切线,切点为,双曲线左顶点为,若,则双曲线的渐近线方程为       (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则Mn=(  )
A.0B.C.2D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的左、右焦点分别为,左、右顶点分别为,过焦点轴垂直的直线和双曲线的一个交点为,若的等差中项,则该双曲线的离心率为              .

查看答案和解析>>

同步练习册答案