精英家教网 > 高中数学 > 题目详情
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (t为参数,0<a<),曲线C的极坐标方程为
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.
(I) ;(II) 4.

试题分析:(I)利用,易得曲线C的直角坐标方程;(II)直线过点,根据直线的参数方程中的几何意义,知道,将直线的参数方程与抛物线方程联立,利用韦达定理转化为关于a的函数式,求最值即可.
试题解析:(I)由,得,所以曲线C的直角坐标方程为;
(II)将直线l的参数方程代入,得,设两点对应的参数分别为,则 ,当时,的最小值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,)。
(I)求椭圆C的方程;
(II)过P点分别以为斜率的直线分别交椭圆C于A,B,M,N,求证: 使得

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知焦点在轴上的椭圆和双曲线的离心率互为倒数,它们在第一象限交点的坐标为,设直线(其中为整数).
(1)试求椭圆和双曲线的标准方程;
(2)若直线与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的左、右焦点分别为离心率为直线与C的两个交点间的距离为
(I)求
(II)设过的直线l与C的左、右两支分别相交有A、B两点,且证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为两个不相等的非零实数,则方程所表示的曲线可能是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点F作一直线l交抛物线于A、B两点,以AB为直径的圆与该抛物线的准线l的位置关系为(     )
A. 相交 B. 相离 C. 相切 D. 不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1,F2是双曲线的左、右焦点,过左焦点F1的直线与双曲线C的左、右两支分别交于A,B两点,若,则双曲线的离心率是(   )
A.B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设圆和圆是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹可能是(   )

              
①              ②           ③              ④            ⑤
A.①③⑤B.②④⑤C.①②④D.①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率为(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案