精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,点为动点,分别为椭圆的左、右焦点.已知为等腰三角形.

(1)求椭圆的离心率
(2)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹
方程.
(1);(2).

试题分析:(1)先利用平面向量的数量积确定为钝角,从而得到当时,必有,根据两点间的距离公式列有关的方程,求出之间的等量关系,从而求出离心率的值;(2)先求出直线的方程,与椭圆方程联立求出交点的坐标,利用以及三点共线列方程组消去,从而得出点的轨迹方程.
试题解析:(1)设椭圆的焦距为,则

,所以为钝角,
由于为等腰三角形,,即
,整理得,即
由于,故有,即椭圆的离心率为
(2)易知点的坐标为,则直线的斜率为
故直线的方程为,由于
故椭圆的方程为,即
将直线的方程代入椭圆方程并化简得,解得
于是得到点
(2)设点的坐标为,由于点在直线上,所以




整理得,即点的轨迹方程为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知的顶点在椭圆上,在直线上,且
(1)当边通过坐标原点时,求的长及的面积;
(2)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ)求抛物线的方程;
(Ⅱ)当点为直线上的定点时,求直线的方程;
(Ⅲ)当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线的焦点为,准线为,以为圆心的圆相切于点的纵坐标为是圆轴除外的另一个交点.
(I)求抛物线与圆的方程;
(II)过且斜率为的直线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,

(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线与x轴围成一个等腰三角形,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线(p>0)的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为(     )  
A.B.2C.+1D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的左焦点作圆: 的两条切线,切点为,双曲线左顶点为,若,则双曲线的渐近线方程为       (    )
A.B.C.D.

查看答案和解析>>

同步练习册答案