精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ)求抛物线的方程;
(Ⅱ)当点为直线上的定点时,求直线的方程;
(Ⅲ)当点在直线上移动时,求的最小值.
(1)  (2)  (3)

试题分析: (1)利用点到直线的距离公式直接求解C的值,便可确定抛物线方程;(2)利用求导的思路确定抛物线的两条切线,借助均过点P,得到直线方程;(3)通过直线与抛物线联立,借助韦达定理和抛物线定义将进行转化处理,通过参数的消减得到函数关系式是解题的关键,然后利用二次函数求最值,需注意变量的范围.
试题解析:(1)依题意,解得(负根舍去)        (2分)
抛物线的方程为;                                         (4分)
(2)设点,,由,即
∴抛物线在点处的切线的方程为,即.  (5分)
, ∴ .   ∵点在切线上,  ∴.       ①
同理, . ② (6分)
综合①、②得,点的坐标都满足方程 . (7分)
∵经过两点的直线是唯一的,∴直线 的方程为,即; (8分)
(3)由抛物线的定义可知, (9分)
所以联立,消去
   (10分)
    (11分)
时,取得最小值为                          (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

)如图,椭圆为椭圆的顶点

(Ⅰ)若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆方程;
(Ⅱ)已知:直线相交于两点(不是椭圆的左右顶点),并满足 试研究:直线是否过定点? 若过定点,请求出定点坐标,若不过定点,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,若椭圆的右顶点为圆的圆心,离心率为.
(1)求椭圆的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系上取两个定点,再取两个动点
(I)求直线交点的轨迹的方程;
(II)已知,设直线:与(I)中的轨迹交于两点,直线 的倾斜角分别为,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,点为动点,分别为椭圆的左、右焦点.已知为等腰三角形.

(1)求椭圆的离心率
(2)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹
方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,)。
(I)求椭圆C的方程;
(II)过P点分别以为斜率的直线分别交椭圆C于A,B,M,N,求证: 使得

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为双曲线的左焦点,在轴上点的右侧有一点,以为直径的圆与双曲线左、右两支在轴上方的交点分别为,则的值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为两个不相等的非零实数,则方程所表示的曲线可能是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率为(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案