精英家教网 > 高中数学 > 题目详情
已知椭圆是其左右焦点,离心率为,且经过点.
(1)求椭圆的标准方程;
(2)若分别是椭圆长轴的左右端点,为椭圆上动点,设直线斜率为,且,求直线斜率的取值范围;
(3)若为椭圆上动点,求的最小值.
(1)椭圆的方程为;(2)直线的斜率的取值范围是
(3)的最小值是.

试题分析:(1)利用离心率以及确定之间的等量关系,然后将点的坐标代入椭圆的方程求出,从而确定椭圆的标准方程;(2)设直线的斜率为,并设点的坐标为,利用点在椭圆上以及斜率公式得到,进而利用的取值范围可以求出的取值范围;(3)利用已知条件,利用余弦定理得到,结合基本不等式求出的最小值.
试题解析:(1),故椭圆的方程为
(2)设的斜率为,设点


 又
,故斜率的取值范围为
(3)设椭圆的半长轴长、半短轴长、半焦距分别为,则有

由椭圆定义,有
 



的最小值为.
(当且仅当时,即取椭圆上下顶点时,取得最小值)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(13分)如图,某隧道设计为双向四车道,车道总宽20m,要求通行车辆限高5m,隧道全长2.5km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆。

(1)若最大拱高h为6 m,则隧道设计的拱宽是多少?
(2)若要使隧道上方半椭圆部分的土方工程 量最小,则应如何设计拱高h和拱宽?(已知:椭圆+=1的面积公式为S=,柱体体积为底面积乘以高。)
(3)为了使隧道内部美观,要求在拱线上找两个点M、N,使它们所在位置的高度恰好是限高5m,现以M、N以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的倍,试确定M、N的位置以及的值,使总造价最少。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知定点,动点N满足(O为坐标原点),,求点P的轨迹方程.

(2)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(ⅰ)设直线的斜率分别为,求证:为定值;
(ⅱ)当点运动时,以为直径的圆是否经过定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过的直线与椭圆交于两点,问在椭圆上是否存在一点,使四边形为平行四边形,若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的离心率为,右准线方程为,
(1)求双曲线C的方程;
(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在以双曲线C的实轴长为直径的圆上,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点.(12分)

(1)求椭圆的方程;(3分)
(2)求的最小值,并求此时圆的方程;(4分)
(3)设点是椭圆上异于,的任意一点,且直线分别与轴交于点为坐标原点,求证:为定值.(5分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

矩形的中心在坐标原点,边轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线,,的交点依次为.

(1)以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段等分点从左向右依次为,线段等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,圆,动圆与已知两圆都外切.
(1)求动圆的圆心的轨迹的方程;
(2)直线与点的轨迹交于不同的两点的中垂线与轴交于点,求点的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案