精英家教网 > 高中数学 > 题目详情
已知数列{an}是等比数列,a1=2,a3=18.数列{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求数列{an},{bn}的通项公式;
(2)设Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,3,….试比较Pn与Qn的大小,并证明你的结论.
分析:(1)由等比数列通项公式,结合题意算出数列{an}的公比q=±3.讨论可得当q=-3时与题意矛盾,故q=3可得an=2×3n-1.由此得到{bn}的前4项和等于a1+a2+a3=26,利用等差数列的通项公式算出公差d=3,得bn=3n-1;
(2)根据等差数列的性质,可得b1,b4,b7,…,b3n-2和b10,b12,b14,…,b2n+8分别组成以3d、2d为公差的等差数列,由等差数列求和公式算出Pn=
9
2
n2-
5
2
n、Qn=3n2+26n.作差后,因式分解得Pn-Qn=
3
2
n(n-19),结合n为正整数加以讨论,即可得到Pn与Qn的大小关系,从而使本题得到解决.
解答:解:(1)设{an}的公比为q,由a3=a1q2得q2=
a3
a1
=9,q=±3.
①当q=-3时,a1+a2+a3=2-6+18=14<20,
这与a1+a2+a3>20矛盾,故舍去.
②当q=3时,a1+a2+a3=2+6+18=26>20,故符合题意.
∴an=a1qn-1=2×3n-1
设数列{bn}的公差为d,由b1+b2+b3+b4=a1+a2+a3=26,
得4b1+
4×3
2
d=26,结合b1=2,解之得d=3,
所以bn=bn+(n-1)d=2+3(n-1)=3n-1
综上所述,数列{an},{bn}的通项公式分别为an=2×3n-1、bn=3n-1;
(2)∵b1,b4,b7,…,b3n-2组成以3d为公差的等差数列,
∴Pn=nb1+
n(n-1)
2
•3d=
9
2
n2-
5
2
n;
同理可得:b10,b12,b14,…,b2n+8组成以2d为公差的等差数列,且b10=29,
∴Qn=nb10+
n(n-1)
2
•2d=3n2+26n.
因此,Pn-Qn=(
9
2
n2-
5
2
n)-(3n2+26n)=
3
2
n(n-19).
所以对于正整数n,当n≥20时,Pn>Qn;当n=19时,Pn=Qn;当n≤18时,Pn<Qn
点评:本题给出等差数列与等比数列满足的关系式,求它们的通项公式,并比较两个和式的大小.着重考查了等差数列、等比数列的通项公式与求和公式、利用作差法比较两个式子的大小等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,则这个数列的前n项和Sn的计算公式为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个数列中,如果?n∈N*,都有an•an+1•an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=3,公积为27,则a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中数学 来源: 题型:

定义“等积数列”:在一个数列中,如果每一个项与它的后一项的积都为同一个常数,那末这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,Tn为数列{an}前n项的积,则T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中数学 来源: 题型:

我们对数列作如下定义,如果?n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为6,则a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数列叫做等差数列,这个常数叫做该数列的公差.
(1)类比等差数列的定义给出“等和数列”的定义;
(2)已知数列{an}是等和数列,且a1=2,公和为5,求 a18的值,并猜出这个数列的通项公式(不要求证明).

查看答案和解析>>

同步练习册答案