精英家教网 > 高中数学 > 题目详情
已知不等式m2+(cos2θ-5)m+4sin2θ≥0恒成立,则实数m的取值范围是( )
A.0≤m≤4
B.1≤m≤4
C.m≥4或m≤0
D.m≥1或m≤0
【答案】分析:先利用三角函数公式将抽象不等式变为三角不等式,再由三角函数的有界性结合一次函数的性质求参数m的范围,即可选出正确选项.
解答:解:∵m2+(cos2θ-5)m+4sin2θ≥0,
∴m2+(cos2θ-5)m+4(1-cos2θ)≥0;
∴cos2θ(m-4)+m2-5m+4≥0恒成立
?不等式恒成立
?m≤0或m≥4,
故选C.
点评:本题考点是函数恒成立问题,利用函数的性质将不等式恒成立求参数的问题转化为求函数最值的问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知矩阵M
2-3
1-1
所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
(2)已知直线l:3x+4y-12=0与圆C:
x=-1+2cosθ
y=2+2sinθ
(θ为参数 )试判断他们的公共点个数;
(3)解不等式|2x-1|<|x|+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.如图,四边形ABCD内接于⊙O,弧AB=弧AD,过A点的切线交CB的延长线于E点.
求证:AB2=BE•CD.
B.已知矩阵M
2-3
1-1
所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
C.已知圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)将圆的极坐标方程化为直角坐标方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2+(m+1)x+m2>0的解集为R,则实数m的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知不等式x2+(m+1)x+m2>0的解集为R,则实数m的取值范围为(  )
A.(-∞, -
1
3
)∪(1, +∞)
B.(-∞, -1)∪(
1
3
, +∞)
C.(-
1
3
, 1)
D.(-1, 
1
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式m2+(cos2θ-5)m+4sin2θ≥0恒成立,则实数m的取值范围是
A.0≤m≤4             B.1≤m≤4           C.m≥4或x≤0       D.m≥1或m≤0

 

查看答案和解析>>

同步练习册答案