精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E: =1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P( )在椭圆E上.
(1)求椭圆E的方程;
(2)设不过原点O且斜率为 的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,
证明:︳MA︳︳MB︳=︳MC︳︳MD︳

【答案】
(1)

解:如图,

由题意可得 ,解得a2=4,b2=1,

∴椭圆E的方程为


(2)

证明:

设AB所在直线方程为

联立 ,得x2+2mx+2m2﹣2=0.

∴△=4m2﹣4(2m2﹣2)=8﹣4m2>0,即

设A(x1,y1),B(x2,y2),M(x0,y0),

|AB|=

∴x0=﹣m, ,即M( ),

则OM所在直线方程为

联立 ,得

∴C(﹣ ),D( ,﹣ ).

则︳MC︳︳MD︳=

= =

而︳MA︳︳MB︳= (10﹣5m2)=

span>∴︳MA︳︳MB︳=︳MC︳︳MD︳.


【解析】(Ⅰ)由题意可得a=2b,再把已知点的坐标代入椭圆方程,结合隐含条件求得a,b得答案;
(2)设出直线方程,与椭圆方程联立,求出弦长及AB中点坐标,得到OM所在直线方程,再与椭圆方程联立,求出C,D的坐标,把︳MA︳︳MB︳化为 ,再由两点间的距离公式求得︳MC︳︳MD︳的值得答案;
本题考查椭圆的标准方程,考查了直线与圆锥曲线位置关系的应用,训练了弦长公式的应用,考查数学转化思想方法,训练了计算能力,是中档题.
【考点精析】关于本题考查的椭圆的标准方程,需要了解椭圆标准方程焦点在x轴:,焦点在y轴:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面向量满足

(1),试求的夹角的余弦值

(2)若对一切实数恒成立,求的夹角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2+bx+c.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;
(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点求证:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+
(1)若a2 , a3 , a2+a3成等差数列,求数列{an}的通项公式;
(2)设双曲线x2 =1的离心率为en , 且e2=2,求e12+e22+…+en2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=log4(22x+1)+mx的图象经过点 .

(Ⅰ)求m值并判断的奇偶性;

(Ⅱ)设gx)=log4(2x+x+afx),若关于x的方程fx)=gx)在x∈[-2,2]上有且只有一个解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知函数(R).

1)当取什么值时,函数取得最大值,并求其最大值;

2)若为锐角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km)

(1)t4时,求s的值;

(2)st变化的规律用数学关系式表示出来;

(3)N城位于M地正南方向,且距M650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,曲线

,过点的直线的参数方程为为参数),分别交于.

(1)写出的平面直角坐标系方程和的普通方程;

(2)若成等比数列,求的值.

查看答案和解析>>

同步练习册答案