精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{kx+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,下列是关于函数y=f[f(x)]+1的零点个数的4个判断:
①当k>0时,有3个零点;
②当k<0时,有2个零点;
③当k>0时,有4个零点;
④当k<0时,有1个零点,
则正确的判断是③④.

分析 由y=0得f[f(x)]=-1,利用换元法将函数分解为f(x)=t和f(t)=-1,作出函数f(x)的图象,利用数形结合即可得到结论.

解答 解答:解:由y=f[f(x)]+1=0得f[f(x)]+1=0,
即f[f(x)]=-1,
设f(x)=t,
则方程f[f(x)]=-1
等价为f(t)=-1,
①若k>0,作出函数f(x)的图象如图
∵f(t)=-1,
∴此时方程f(t)=-1有两个根其中t2<0,0<t1<1,
由f(x)=t2<0,知此时x有两解,
由f(x)=t1∈(0,1)知此时x有两解,
此时共有4个解,即函数y=f[f(x)]+1有4个零点.
②若k<0,作出函数f(x)的图象如图:
∵f(t)=-1,
∴此时方程f(t)=-1有一个根t1,其中0<t1<1,
由f(x)=t1∈(0,1)知此时x只有1个解,
即函数y=f[f(x)]+1有1个零点.
综上:只有③④正确.
故答案为:③④.

点评 本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象,其中A,B两点之间的距离为5.
(1)求函数f(x)的解析式;
(2)判断函数f(x)在区间[$\frac{7}{4}$,$\frac{9}{4}$]上是否存在对称轴,存在求出方程;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=lnx在点A(1,0)处的切线方程为(  )
A.x-1-0B.x+y-1=0C.x-y-1=0D.x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知二次函数y=x2-3x+2,则其图象的开口向向上;对称轴方程为直线x=$\frac{3}{2}$;顶点坐标为($\frac{3}{2}$,-$\frac{1}{4}$),与x轴的交点坐标为(1,0),(2,0),最小值为-$\frac{1}{4}$;递增区间为[$\frac{3}{2}$,+∞),递减区间为(-∞,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2-x+4.
(1)若函数g(x)=lgf(x)在区间[1,+∞)上单调递增,求实数a的取值范围;
(2)设函数h(x)=x2-(a+2)x-2(a+4),若存在两个非负整数m,n(0≤m<n),使得函数f(x)与h(x)在区间(m,n)上恒有f(x)<0且h(x)<0成立,求n的最大值,及n取最大值时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若不等式f(x)≤0的解集为区间[a,b](a<b),那么称I=b-a为不等式f(x)≤0的解集长度,已知函数f(x)=mx2+(m2-m-2)x+2(1-m)(m>0).
(1)当m=3时,求不等式f(x)≤0的解集长度;
(2)若不等式f(x)≤0的解集长度不小于2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{|2x-1|,}&{x>0}\\{\frac{3}{2}x+2,}&{x≤0}\end{array}\right.$,若关于x的方程f(sinx)=m在区间[0,2π]上有四个不同的实数根,则实数m的取值范围是(  )
A.0<m<$\frac{1}{2}$B.0<m≤$\frac{1}{2}$C.$\frac{1}{2}$<m≤1D.$\frac{1}{2}$<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{3}$,$\frac{π}{4}$]
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$及|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(2)若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-|$\overrightarrow{a}$+$\overrightarrow{b}$|,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求g(x)=(3-x)•(2x-1)($\frac{1}{2}<x<3$)的最大值.

查看答案和解析>>

同步练习册答案