精英家教网 > 高中数学 > 题目详情
已知中心在原点,焦点在y轴上的双曲线的离心率为
5
,则它的渐近线方程为(  )
A、y=±2x
B、y=±
5
2
x
C、y=±
1
2
x
D、y=±
6
x
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:可设方程为:
y2
a2
-
x2
b2
=1,由离心率和abc的关系可得b2=2a2,而渐近线方程为y=±
a
b
,代入可解.
解答: 解:设双曲线的方程为
y2
a2
-
x2
b2
=1(a>0,b>0),
∵e=
c
a
=
a2+b2
a
=
5
,得b2=4a2
b
a
=2,
∴双曲线的渐近线方程为y=±
1
2
x
故选:C.
点评:本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=|3x-1|,c<b<a且f(c)>f(a)>f(b),在关系式①3c>3b②3b>3a③3c+3a>2④3c+3a<2中一定成立的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有两个投资项目A,B,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)

(1)分别将A,B两个投资项目的利润表示为投资B={x|x<a}(万元)的函数关系式;
(2)现将x(0≤x≤10)万元投资A项目,10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的公比q=2,前n项和为Sn,则
S5
a4
=(  )
A、2
B、4
C、
31
8
D、
31
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an},a3=5,a1+a2=4.数列{bn}的前n项和为Sn,且Sn=1-
1
2
bn
(1)求数列{an}、{bn}的通项公式;
(2)记cn=
1
2
anbn,求数列{cn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两位同学参加学校安排的3次体能测试,规定按顺序测试,一旦测试合格就不必参加以后的测试,否则3次测试都要参加.甲同学3次测试每次合格的概率组成一个公差为
1
8
的等差数列,他第一次测试合格的概率不超过
1
2
,且他直到第二次测试才合格的概率为
9
32
,乙同学3次测试每次测试合格的概率均为
2
3
,每位同学参加的每次测试是否合格相互独立.
(Ⅰ)求甲同学第一次参加测试就合格的概率P;
(Ⅱ)设甲同学参加测试的次数为m,乙同学参加测试的次数为n,求ξ=m+n的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+x,x≤1
log
1
3
x,x>1
,若对任意的x∈R,不等式f(x)≤m2-
3
4
m恒成立,则实数m的取值范围是(  )
A、(-∞,-
1
4
]
B、(-∞,-
1
4
]∪[1,+∞)
C、[1,+∞)
D、[-
1
4
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

M=
x2+y2
+
x2+(y-1)2
+
(x-1)2+y2
+
(x-1)2+(y-1)2
,当x,y变化时M的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2+
a
x

(1)若a=1,试用定义法证明f(x)在区间[1,+∞)上为增函数;
(2)若f(x)在区间[2,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案