精英家教网 > 高中数学 > 题目详情
若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的取值范围为(  )
分析:先根据双曲线的焦点和方程中的b求得a,则双曲线的方程可得,设出点P,代入双曲线方程求得纵坐标的表达式,根据P,F,O的坐标表示
OP
FP
,进而利用二次函数的性质求得其最小值,则可得
OP
FP
的取值范围.
解答:解:设P(m,n),则
OP
FP
=(m,n)•(m+2,n)=m2+2m+n2
∵F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)的左焦点,
∴a2+1=4,∴a2=3,
∴双曲线方程为
x2
3
-y2=1

∵点P为双曲线右支上的任意一点,
m2
3
-n2=1(m≥
3
)

∴n2=
m2
3
-1,
OP
FP
=(m,n)•(m+2,n)=m2+2m+n2
∴m2+2m+n2=m2+2m+
m2
3
-1=
4
3
m2+2m-1

∵m≥
3

∴函数在[
3
,+∞)上单调递增,
∴m2+2m+n2≥3+2
3

OP
FP
的取值范围为[3+2
3
,+∞).
故选A.
点评:本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)
的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的取值范围为(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)
的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的一点,并且P点与右焦点F′的连线垂直x轴,则线段OP的长为(  )

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省苏州市吴江市第二高级中学高二(下)期末数学复习试卷3(理科)(解析版) 题型:填空题

若点O和点F(-2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为   

查看答案和解析>>

同步练习册答案