分析 要使函数y=$\frac{x+4}{\sqrt{x}}$有意义,则$\sqrt{x}>0$⇒x>>0;
函数y=$\frac{x+4}{\sqrt{x}}$=$\frac{x}{\sqrt{x}}+\frac{4}{\sqrt{x}}=\sqrt{x}+\frac{4}{\sqrt{x}}≥2\sqrt{\sqrt{x}•\frac{4}{\sqrt{x}}}=4$.
解答 解:要使函数y=$\frac{x+4}{\sqrt{x}}$有意义,则$\sqrt{x}>0$⇒x>>0∴定义域为(0,+∞);
函数y=$\frac{x+4}{\sqrt{x}}$=$\frac{x}{\sqrt{x}}+\frac{4}{\sqrt{x}}=\sqrt{x}+\frac{4}{\sqrt{x}}≥2\sqrt{\sqrt{x}•\frac{4}{\sqrt{x}}}=4$,∴最小值是 4.
故答案为:(0,+∞),4
点评 本题考查了函数的定义域、值域,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4] | B. | (-∞,7] | C. | [-$\frac{1}{2}$,4] | D. | [-$\frac{1}{2}$,7] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com