精英家教网 > 高中数学 > 题目详情

已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).

(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;

(Ⅱ)求数列{an}的通项公式;

(Ⅲ)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.

答案:
解析:

  (Ⅰ)证明:由题设,得

  

  即

  又,所以是首项为1,公比为的等比数列.

  (Ⅱ)解:由(Ⅰ),

  

  

  ……

  

  将以上各式相加,得.所以当时,

  

  上式对显然成立.

  (Ⅲ)解:由(Ⅱ),当时,显然不是的等差中项,故

  由可得,由

  ,  ①

  整理得,解得(舍去).于是

  

  另一方面,

  

  

  由①可得

  

  所以对任意的的等差中项.

  本小题主要考查等差数列、等比数列的概念、等比数列的通项公式及前项和公式,考查运算能力和推理论证能力及分类讨论的思想方法.满分12分.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案