精英家教网 > 高中数学 > 题目详情

(14分)(2011•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.

(Ⅰ)(Ⅱ)见解析

解析试题分析:(Ⅰ)设动点为M,其坐标为(x,y),求出直线A1、MA2M的斜率,并且求出它们的积,即可求出点M轨迹方程,根据圆、椭圆、双曲线的标准方程的形式,对m进行讨论,确定曲线的形状;(Ⅱ)由(I)知,当m=﹣1时,C1方程为x2+y2=a2,当m∈(﹣1,0)∪(0,+∞)时,C2的焦点分别为F1(﹣a,0),F2(a,0),假设在C1上存在点N(x0,y0)(y0≠0),使得△F1NF2的面积S=|m|a2,的充要条件为,求出点N的坐标,利用数量积和三角形面积公式可以求得tanF1NF2的值.
解:(Ⅰ)设动点为M,其坐标为(x,y),
当x≠±a时,由条件可得
即mx2﹣y2=ma2(x≠±a),
又A1(﹣a,0),A2(a,0)的坐标满足mx2﹣y2=ma2
当m<﹣1时,曲线C的方程为,C是焦点在y轴上的椭圆;
当m=﹣1时,曲线C的方程为x2+y2=a2,C是圆心在原点的圆;
当﹣1<m<0时,曲线C的方程为,C是焦点在x轴上的椭圆;
当m>0时,曲线C的方程为,C是焦点在x轴上的双曲线;
(Ⅱ)由(I)知,当m=﹣1时,C1方程为x2+y2=a2
当m∈(﹣1,0)∪(0,+∞)时,C2的焦点分别为F1(﹣a,0),F2(a,0),
对于给定的m∈(﹣1,0)∪(0,+∞),C1上存在点N(x0,y0)(y0≠0),使得△F1NF2的面积S=|m|a2
的充要条件为
由①得0<|y0|≤a,由②得|y0|=
当0<≤a,即,或时,
存在点N,使S=|m|a2
,即,或时,不存在满足条件的点N.
当m∈[,0)∪(0,]时,由=(﹣a﹣x0,﹣y0),=(a﹣x0,﹣y0),
可得=x02﹣(1+m)a2+y02=﹣ma2
=r1,||=r2,∠F1NF2=θ,
则由=r1r2cosθ=﹣ma2,可得r1r2=
从而s=r1r2sinθ==﹣,于是由S=|m|a2
可得﹣=|m|a2,即tanθ=
综上可得:当m∈[,0)时,在C1上存在点N,使得△F1NF2的面积S=|m|a2,且tanθ=2;
当m∈(0,]时,在C1上存在点N,使得△F1NF2的面积S=|m|a2,且tanθ=﹣2;
时,不存在满足条件的点N.
点评:此题是个难题.考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想.其中问题(II)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知线段的中点为,动点满足为正常数).
(1)建立适当的直角坐标系,求动点所在的曲线方程;
(2)若,动点满足,且,试求面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知P是圆M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.
(1)求出轨迹C的方程,并讨论曲线C的形状;
(2)当m=时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点且离心率为
(1)求椭圆的方程;
(2)若斜率为的直线两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为,离心率,是椭圆上的动点.
(1)求椭圆标准方程;
(2)若直线的斜率乘积,动点满足,(其中实数为常数).问是否存在两个定点,使得?若存在,求的坐标及的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,两个焦点为.
(1)求椭圆的方程;
(2),是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个焦点为,且离心率为
(1)求椭圆方程;
(2)过点且斜率为的直线与椭圆交于两点,点关于轴的对称点为,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线上有一点到焦点的距离为.
(1)求的值.
(2)如图,设直线与抛物线交于两点,且,过弦的中点作垂直于轴的直线与抛物线交于点,连接.试判断的面积是否为定值?若是,求出定值;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆E:的焦点在x轴上.
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1、F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在某定直线上.

查看答案和解析>>

同步练习册答案