精英家教网 > 高中数学 > 题目详情

已知椭圆过点且离心率为
(1)求椭圆的方程;
(2)若斜率为的直线两点,且,求直线的方程.

(1);(2)直线的方程为.

解析试题分析:(1)先根据椭圆过点确定,进而根据离心率及椭圆中的关系式得到,进而求解出即可确定椭圆的方程;(2)设及直线,进而联立直线与椭圆的方程得到,消得到,进而根据二次方程根与系数的关系可得,进而代入弦长公式,从中即可求解出的值,进而可确定直线的方程.
(1)由题知,又因为,从中求解得到
则椭圆的方程为
(2)设,直线
,消去得到


解得,又直线有两个交点
故直线的方程为.
考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系;3.二次方程根与系数的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,点在椭圆上.
(1)求椭圆C的方程;
(2)设椭圆的左右顶点分别是A、B,过点的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,定直线的方程为.动圆与圆外切,且与直线相切.
(1)求动圆圆心的轨迹的方程;
(2)直线与轨迹相切于第一象限的点, 过点作直线的垂线恰好经过点,并交轨迹于异于点的点,求直线的方程及的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是20,求此时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(2011•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆的 左,右焦点。
(1)若P是该椭圆上一个动点,求的 最大值和最小值。
(2)设过定点M(0,2)的 直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l斜率k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xoy中,已知椭圆C1的左焦点为F1(-1,0),且点P(0,1)在C1上。
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别为左、右焦点,双曲线的左支上有一点P,∠F1PF2,且△PF1F2的面积为2,双曲线的离心率为2,求该双曲线的标准方程.

查看答案和解析>>

同步练习册答案