在平面直角坐标系xoy中,已知椭圆C1:的左焦点为F1(-1,0),且点P(0,1)在C1上。
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:相切,求直线l的方程.
科目:高中数学 来源: 题型:解答题
已知抛物线上有一点到焦点的距离为.
(1)求及的值.
(2)如图,设直线与抛物线交于两点,且,过弦的中点作垂直于轴的直线与抛物线交于点,连接.试判断的面积是否为定值?若是,求出定值;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(已知抛物线()的准线与轴交于点.
(1)求抛物线的方程,并写出焦点坐标;
(2)是否存在过焦点的直线(直线与抛物线交于点,),使得三角形的面积?若存在,请求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2014·武汉模拟)已知点P是圆M:x2+(y+m)2=8(m>0,m≠)上一动点,点N(0,m)是圆M所在平面内一定点,线段NP的垂直平分线l与直线MP相交于点Q.
(1)当P在圆M上运动时,记动点Q的轨迹为曲线Г,判断曲线Г为何种曲线,并求出它的标准方程.
(2)过原点斜率为k的直线交曲线Г于A,B两点,其中A在第一象限,且它在x轴上的射影为点C,直线BC交曲线Г于另一点D,记直线AD的斜率为k′,是否存在m,使得对任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆E:的焦点在x轴上.
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1、F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在某定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,离心率为的椭圆上的点到其左焦点的距离的最大值为3,过椭圆内一点的两条直线分别与椭圆交于点、和、,且满足,其中为常数,过点作的平行线交椭圆于、两点.
(1)求椭圆的方程;
(2)若点,求直线的方程,并证明点平分线段.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C1:x2=y,圆C2:x2+(y-4)2=1的圆心为点M
(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点M(x,y)到直线l:x = 4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A, B两点. 若A是PB的中点, 求直线m的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com