已知抛物线C1:x2=y,圆C2:x2+(y-4)2=1的圆心为点M![]()
(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xoy中,已知椭圆C1:
的左焦点为F1(-1,0),且点P(0,1)在C1上。
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:
相切,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在坐标原点,对称轴为坐标轴,焦点在
轴上,有一个顶点为
,
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于
两点,线段
的中点为
,求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,以原点为圆心、椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设
,过点
作直线
(不与
轴重合)交椭圆于
、
两点,连结
、
分别交直线
于
、
两点,试探究直线
、
的斜率之积是否为定值,若为定值,请求出;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
:
和
:![]()
的焦点分别为
,
交于
两点(
为坐标原点),且![]()
.
(1)求抛物线
的方程;
(2)过点
的直线交
的下半部分于点
,交
的左半部分于点
,点
坐标为
,求△
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
的右焦点![]()
,长轴的左、右端点分别为
,且
.
(1)求椭圆
的方程;
(2)过焦点
斜率为
(
)的直线
交椭圆
于
两点,弦
的垂直平分线与
轴相交于
点. 试问椭圆
上是否存在点
使得四边形
为菱形?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:![]()
,点A、B在抛物线C上.![]()
(1)若直线AB过点M(2p,0),且
=4p,求过A,B,O(O为坐标原点)三点的圆的方程;
(2)设直线OA、OB的倾斜角分别为
,且
,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的焦距为
,过右焦点和短轴一个端点的直线的斜率为
,
为坐标原点.
(1)求椭圆
的方程.
(2)设斜率为
的直线
与
相交于
、
两点,记
面积的最大值为
,证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com