精英家教网 > 高中数学 > 题目详情

已知抛物线C:,点A、B在抛物线C上.

(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;
(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.

(1);(2)过定点

解析试题分析:(1)当直线斜率不存在时方程为,与的交点分别为M,N,弦长。此时边的中线长为,所以是直角三角形,过三点的圆的圆心为边的中点,半径为,则可得此圆的标准方程。(2)设点,为了省去对斜率存在与否的讨论可设直线AB的方程为:。将直线与抛物线方程联立,消去整理为关于的一元二次方程,可得根与系数的关系。根据用正切的两角和公式展开可得关于两点坐标间的关系。根据两关系式可得间的关系,故此可判断直线是否过定点。
试题解析:(1)直线与抛物线的两个交点坐标分别是:M,N,弦长,故三角形ABO是,所以过A,B,O三点的圆方程是:
(2)解:设点,直线AB的方程为:,它与抛物线相交,由方程组消去x可得,故
这样,tan
即1=,所以,所以直线AB的方程可以写成为:,即,所以直线AB过定点.
考点:1圆的标准方程;2抛物线与直线的位置关系问题;3直线过定点问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,离心率为的椭圆上的点到其左焦点的距离的最大值为3,过椭圆内一点的两条直线分别与椭圆交于点,且满足,其中为常数,过点的平行线交椭圆于两点.

(1)求椭圆的方程;
(2)若点,求直线的方程,并证明点平分线段.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C1:x2=y,圆C2:x2+(y-4)2=1的圆心为点M

(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆的方程;
(2)已知直线与椭圆交于两点,试问,是否存在轴上的点,使得对任意的为定值,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右顶点分别为,离心率
(1)求椭圆的方程;
(2)若点为曲线:上任一点(点不同于),直线与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知抛物线过点,直线两点,过点且平行于轴的直线分别与直线轴相交于点
 
(1)求的值;
(2)是否存在定点,当直线过点时,△与△的面积相等?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线,直线过抛物线的焦点,交轴于点.

(1)求证:
(2)过作抛物线的切线,切点为(异于原点),
(i)是否恒成等差数列,请说明理由;
(ii)重心的轨迹是什么图形,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的方程为,其中.
(1)求椭圆形状最圆时的方程;
(2)若椭圆最圆时任意两条互相垂直的切线相交于点,证明:点在一个定圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程,
并证明
(ⅱ)求证:线段的长为定值.

查看答案和解析>>

同步练习册答案