已知椭圆
的左右顶点分别为
,离心率
.
(1)求椭圆的方程;
(2)若点
为曲线
:
上任一点(
点不同于
),直线
与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.
(1)
(2)相切
解析试题分析:
(1)根据椭圆的标准方程可以判断椭圆的焦点在x轴上,而x轴上顶点的坐标已知,即可得到a的值,再根据离心率的计算公式
即可求的c的值,再利用a,b,c之间的关系即可求的
的值,得到椭圆的标准方程.
(2)设出C点坐标,点R在直线x=2上,即点R的横坐标已知,再利用A,C,R三点哎同一直线上,即向量
共线,把A,C的坐标带入即可得到R点的坐标,D为RB的中点,利用中点坐标公式即可得到D点的坐标,CD两点坐标已知,利用直线的两点式即可求的直线CD的方程,利用C点满足圆E的方程,计算圆心到直线CD的距离,可得到圆心到直线CD的距离等于圆E的半径,即直线DC与圆E相切.
试题解析:
(1)由题意可得
,
,∴
2分
∴
, 3分
所以椭圆的方程为
. 4分
(2)曲线
是以
为圆心,半径为2的圆。
设
,点
的坐标为
, 5分
∵
三点共线,∴
, 6分
而
,
,则
,
∴
, 8分
∴点
的坐标为
,点
的坐标为
, 10分
∴直线
的斜率为
,
而
,∴
,
∴
, 12分
∴直线
的方程为
,化简得
,
∴圆心
到直线
的距离
, 13分
所以直线
与曲线
相切. 14分
考点:椭圆离心率圆与直线的位置关系
科目:高中数学 来源: 题型:解答题
给定椭圆
.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线
,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
:
和
:![]()
的焦点分别为
,
交于
两点(
为坐标原点),且![]()
.
(1)求抛物线
的方程;
(2)过点
的直线交
的下半部分于点
,交
的左半部分于点
,点
坐标为
,求△
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
的右焦点![]()
,长轴的左、右端点分别为
,且
.
(1)求椭圆
的方程;
(2)过焦点
斜率为
(
)的直线
交椭圆
于
两点,弦
的垂直平分线与
轴相交于
点. 试问椭圆
上是否存在点
使得四边形
为菱形?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的准线与x轴交于点M,过点M作圆
的两条切线,切点为A、B,
.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:![]()
,点A、B在抛物线C上.![]()
(1)若直线AB过点M(2p,0),且
=4p,求过A,B,O(O为坐标原点)三点的圆的方程;
(2)设直线OA、OB的倾斜角分别为
,且
,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点![]()
与分别在
轴、
轴上的动点
满足:
,动点
满足
.
(1)求动点
的轨迹的方程;
(2)设过点
任作一直线与点
的轨迹交于
两点,直线
与直线
分别交于点
(
为坐标原点);
(i)试判断直线
与以
为直径的圆的位置关系;
(ii)探究
是否为定值?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,已知
,
,
是椭圆
上不同的三点,
,
,
在第三象限,线段
的中点在直线
上.![]()
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点
在椭圆上(异于点
,
,
)且直线PB,PC分别交直线OA于
,
两点,证明
为定值并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2px(p>0)的焦点F和椭圆
的右焦点重合,直线
过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线
交y轴于点M,且
,m、n是实数,对于直线
,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com