已知定点![]()
与分别在
轴、
轴上的动点
满足:
,动点
满足
.
(1)求动点
的轨迹的方程;
(2)设过点
任作一直线与点
的轨迹交于
两点,直线
与直线
分别交于点
(
为坐标原点);
(i)试判断直线
与以
为直径的圆的位置关系;
(ii)探究
是否为定值?并证明你的结论.
(1)
;(2)(i)相切;(ii)
为定值,且定值为0.证明过程见解析.
解析试题分析:(1)假设P点坐标,由
,
,经向量的坐标运算,易得P的轨迹方程. (2)(i)A,B,两点到准线的距离与到焦点距离相等,又
是方程的准线,结合图形,易得直线与圆相切. (ii)假设过F点的直线方程AB为
与抛物线方程联立,求得A,B两点坐标.写出OA,OB所在直线方程,求出与
的交点
坐标,转化为向量的坐标运算,可知
=0
试题解析:
解:(1)设动点
的坐标为
,则
1分
又
,由
得
2分
即
亦即
3分
代入
即得:动点
的轨迹的方程为:
4分
(2)由(1)知动点
的轨迹是以
为焦点,
为准线的抛物线,设直线
的方程为
;点
的坐标分别为
.
(i)设
两点到准线
的距离分别为
,则
,
设
的中点
到准线
的距离为
, 5分
则
7分
直线
与以
为直径的圆相切. 8分
(注:直接运算得到正确结果同样给分)
(ii)由
得
,
10分![]()
的方程为
,即
由
得点
的坐标为
,
同理可得点
的坐标为
, 11分 ![]()
于是
12分
因此
为定值,且定值为0. 13分
考点:抛物线的几何性质,直线与抛物线的关系,向量的坐标运算.
科目:高中数学 来源: 题型:解答题
已知椭圆
左、右焦点分别为F1、F2,点P(2,
),点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于M、N两点,直线F2M与F2N的斜率互为相反数,求证:直线l过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,以原点为圆心、椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设
,过点
作与
轴不重合的直线
交椭圆于
、
两点,连结
、
分别交直线
于
、
两点.试问直线
、
的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右顶点分别为
,离心率
.
(1)求椭圆的方程;
(2)若点
为曲线
:
上任一点(
点不同于
),直线
与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点
是椭圆
的一个顶点,
的长轴是圆
的直径,
、
是过点
且互相垂直的两条直线,其中
交圆
于
、
两点,
交椭圆
于另一点
.![]()
(1)求椭圆
的方程;
(2)求
面积的最大值及取得最大值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线
,直线
过抛物线
的焦点
,交
轴于点
.![]()
(1)求证:
;
(2)过
作抛物线
的切线,切点为
(异于原点),
(i)
是否恒成等差数列,请说明理由;
(ii)
重心的轨迹是什么图形,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
点
分别是
轴和
轴上的动点,且
,动点
满足
,设动点
的轨迹为E.
(1)求曲线E的方程;
(2)点Q(1,a),M,N为曲线E上不同的三点,且
,过M,N两点分别作曲线E的切线,记两切线的交点为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的右焦点为F,A为短轴的一个端点,且
,
的面积为1(其中
为坐标原点).
(1)求椭圆的方程;
(2)若C、D分别是椭圆长轴的左、右端点,动点M满足
,连结CM,交椭圆于点
,证明:
为定值;
(3)在(2)的条件下,试问
轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(
)的短轴长为2,离心率为
.
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为
的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足
(O为坐标原点),当
时,求实数
的取值范围?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com