已知椭圆C:()的短轴长为2,离心率为.
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?
科目:高中数学 来源: 题型:解答题
已知定点与分别在轴、轴上的动点满足:,动点满足.
(1)求动点的轨迹的方程;
(2)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点(为坐标原点);
(i)试判断直线与以为直径的圆的位置关系;
(ii)探究是否为定值?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆经过点,其左、右顶点分别是、,左、右焦点分别是、,(异于、)是椭圆上的动点,连接交直线于、两点,若成等比数列.
(1)求此椭圆的离心率;
(2)求证:以线段为直径的圆过点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且,m、n是实数,对于直线,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点.
(1)求椭圆的方程;
(2)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1:,C2:. 设点P的轨迹为.
(1)求C的方程;
(2)设直线与C交于A,B两点.问k为何值时?此时的值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.
(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线交抛物线于A、B两点,抛物线在A、B两点处的切线交于点M.
(1)求证:A、M、B三点的横坐标成等差数列;
(2)设直线MF交该抛物线于C、D两点,求四边形ACBD面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com