精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1,C2. 设点P的轨迹为
(1)求C的方程;
(2)设直线与C交于A,B两点.问k为何值时?此时的值是多少?

(1)   (2)

解析试题分析:
(1) 通过配方把圆和圆的普通方程化为标准方程,得到圆心的坐标,根据椭圆的定义可以判断C点轨迹为椭圆,其中两个圆的圆心为焦点可得且椭圆的焦点在y轴上,根据题意,李永刚之间的关系即可求出的值,进而得到C的方程.
(2)联立直线与椭圆的方程消元得到二次方程,二次方程的根AB两点的横坐标,利用二次方程根与系数的关系得到AB两点横坐标之间的关系,利用得到AB横纵坐标之间的关系即可求出k的值,再利用椭圆的弦长公式即可求出的长度.
试题解析:
(1)由已知得两圆的圆心坐标分别为.      (1分)
设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴长为2的椭圆.                                                      (2分)
它的短半轴长,                              (3分)
故曲线C的方程为.                                   (4分)
(2)设,其坐标满足 
消去y并整理得,                         (5分)
 ,∴
.                          (6分)
              (7分)
于是.       (8分)
,得.                                   (9分)
因为
所以当时,有,即.                (10分)
时,.                   (11分)
,           (12分)
,        (13分)
所以.                                          (14分)
考点:弦长 内积 椭圆定义 圆

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

抛物线,直线过抛物线的焦点,交轴于点.

(1)求证:
(2)过作抛物线的切线,切点为(异于原点),
(i)是否恒成等差数列,请说明理由;
(ii)重心的轨迹是什么图形,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知离心率为的椭圆的顶点恰好是双曲线的左右焦点,点是椭圆上不同于的任意一点,设直线的斜率分别为.
(1)求椭圆的标准方程;
(2)当,在焦点在轴上的椭圆上求一点Q,使该点到直线(的距离最大。
(3)试判断乘积“(”的值是否与点(的位置有关,并证明你的结论;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程,
并证明
(ⅱ)求证:线段的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图;已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点MN.

(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与轴交于点RSO为坐标原点。求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.
(1)求点P的轨迹方程;
(2)设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为r.
(ⅰ)求圆M的方程;
(ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线=1的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.

查看答案和解析>>

同步练习册答案