精英家教网 > 高中数学 > 题目详情

已知双曲线=1的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6,求直线l的方程.

(1)x2=1(2)y=±(x-2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的焦距为,过右焦点和短轴一个端点的直线的斜率为为坐标原点.
(1)求椭圆的方程.
(2)设斜率为的直线相交于两点,记面积的最大值为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1,C2. 设点P的轨迹为
(1)求C的方程;
(2)设直线与C交于A,B两点.问k为何值时?此时的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线E:ax2+by2=1(a>0,b>0),经过点M的直线l与曲线E交于点A、B,且=-2.
(1)若点B的坐标为(0,2),求曲线E的方程;
(2)若a=b=1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线交抛物线于A、B两点,抛物线在A、B两点处的切线交于点M.

(1)求证:A、M、B三点的横坐标成等差数列;
(2)设直线MF交该抛物线于C、D两点,求四边形ACBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.

(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,两条相交线段的四个端点都在抛物线上,其中,直线的方程为,直线的方程为

(1)若,求的值;
(2)探究:是否存在常数,当变化时,恒有

查看答案和解析>>

同步练习册答案