精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.

(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.

(1)y2=2x(2)x+y-=0(3)(m>0)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知离心率为的椭圆的顶点恰好是双曲线的左右焦点,点是椭圆上不同于的任意一点,设直线的斜率分别为.
(1)求椭圆的标准方程;
(2)当,在焦点在轴上的椭圆上求一点Q,使该点到直线(的距离最大。
(3)试判断乘积“(”的值是否与点(的位置有关,并证明你的结论;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.
(1)求点P的轨迹方程;
(2)设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为r.
(ⅰ)求圆M的方程;
(ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线=1的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,

过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F的直线l2交轨迹于两点P、Q,交直线l1于点R,求·的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的两个焦点是)和,并且经过点,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F
(1)求椭圆C和抛物线E的标准方程;
(2)过点F作两条斜率都存在且互相垂直的直线l1l2l1交抛物线E于点ABl2交抛物线E于点GH,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线与抛物线没有交点;方程表示椭圆;若为真命题,试求实数的取值范围.

查看答案和解析>>

同步练习册答案