已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F的直线l2交轨迹于两点P、Q,交直线l1于点R,求
·
的最小值.
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,其长轴长与短轴长的和等于6.![]()
(1)求椭圆
的方程;
(2)如图,设椭圆
的上、下顶点分别为
,
是椭圆上异于
的任意一点,直线
分别交
轴于点
,若直线
与过点
的圆
相切,切点为
.证明:线段
的长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线E:ax2+by2=1(a>0,b>0),经过点M
的直线l与曲线E交于点A、B,且
=-2
.
(1)若点B的坐标为(0,2),求曲线E的方程;
(2)若a=b=1,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.![]()
(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
,直线
,
为平面上的动点,过点
作
的垂线,垂足为点
,且
.
(1)求动点
的轨迹曲线
的方程;
(2)设动直线
与曲线
相切于点
,且与直线
相交于点
,试探究:在坐标平面内是否存在一个定点
,使得以
为直径的圆恒过此定点
?若存在,求出定点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=
(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
=1(a>b>0)的离心率为
,且过点P
,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.![]()
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
P为圆A:
上的动点,点
.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且
时,求点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com