精英家教网 > 高中数学 > 题目详情

如图,椭圆经过点,其左、右顶点分别是,左、右焦点分别是(异于)是椭圆上的动点,连接交直线两点,若成等比数列.

(1)求此椭圆的离心率;
(2)求证:以线段为直径的圆过点.

(1)(2)见解析

解析试题分析:(1)由椭圆的几何意义知,由等比数列知,,即,两边同除以化为关于离心率的方程,求出离心率;(2)设出P点坐标,利用直线两点式方程写出直线PA,PB方程,通过解PA与及PB与方程分别组成的方程组,解出点M,N的坐标,再通过计算向量法=0,证明,证明为直径的圆过点.
试题解析:(1)由题意可知,成等比数列,所以
(2)由,椭圆经过点可知,椭圆方程为
,由题意可知
解得,则
故以线段为直径的圆过点.
考点:1.椭圆的几何性质;2.直线与椭圆的位置关系;3.运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,过点作与轴不重合的直线交椭圆于两点,连结分别交直线两点.试问直线的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点分别是轴和轴上的动点,且,动点满足,设动点的轨迹为E.
(1)求曲线E的方程;
(2)点Q(1,a),M,N为曲线E上不同的三点,且,过M,N两点分别作曲线E的切线,记两切线的交点为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为FA为短轴的一个端点,且的面积为1(其中为坐标原点).
(1)求椭圆的方程;
(2)若CD分别是椭圆长轴的左、右端点,动点M满足,连结CM,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DPMQ的交点,若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比为
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,设点P是椭圆上的任意一点,若当最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知离心率为的椭圆的顶点恰好是双曲线的左右焦点,点是椭圆上不同于的任意一点,设直线的斜率分别为.
(1)求椭圆的标准方程;
(2)当,在焦点在轴上的椭圆上求一点Q,使该点到直线(的距离最大。
(3)试判断乘积“(”的值是否与点(的位置有关,并证明你的结论;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,F1F2分别为椭圆C的左、右两个焦点,AB为两个顶点,该椭圆的离心率为的面积为.

(1)求椭圆C的方程和焦点坐标;
(2)作与AB平行的直线交椭圆于PQ两点,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,

过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.

查看答案和解析>>

同步练习册答案