如图,椭圆
经过点
,其左、右顶点分别是
、
,左、右焦点分别是
、
,
(异于
、
)是椭圆上的动点,连接
交直线
于
、
两点,若
成等比数列.![]()
(1)求此椭圆的离心率;
(2)求证:以线段
为直径的圆过点
.
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,以原点为圆心、椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设
,过点
作与
轴不重合的直线
交椭圆于
、
两点,连结
、
分别交直线
于
、
两点.试问直线
、
的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
点
分别是
轴和
轴上的动点,且
,动点
满足
,设动点
的轨迹为E.
(1)求曲线E的方程;
(2)点Q(1,a),M,N为曲线E上不同的三点,且
,过M,N两点分别作曲线E的切线,记两切线的交点为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的右焦点为F,A为短轴的一个端点,且
,
的面积为1(其中
为坐标原点).
(1)求椭圆的方程;
(2)若C、D分别是椭圆长轴的左、右端点,动点M满足
,连结CM,交椭圆于点
,证明:
为定值;
(3)在(2)的条件下,试问
轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比为
,
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,设点P是椭圆上的任意一点,若当
最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知离心率为
的椭圆
的顶点
恰好是双曲线
的左右焦点,点
是椭圆
上不同于
的任意一点,设直线
的斜率分别为
.
(1)求椭圆
的标准方程;
(2)当
,在焦点在
轴上的椭圆
上求一点Q,使该点到直线(
的距离最大。
(3)试判断乘积“(
”的值是否与点(
的位置有关,并证明你的结论;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,F1、F2分别为椭圆C:
的左、右两个焦点,A、B为两个顶点,该椭圆的离心率为
,
的面积为
.![]()
(1)求椭圆C的方程和焦点坐标;
(2)作与AB平行的直线
交椭圆于P、Q两点,
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(
)的短轴长为2,离心率为
.
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为
的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足
(O为坐标原点),当
时,求实数
的取值范围?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
=1(a>b>0)的离心率为
,且过点P
,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,![]()
过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com