已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,过点作与轴不重合的直线交椭圆于、两点,连结、分别交直线于、两点.试问直线、的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由.
(1);(2)详见解析.
解析试题分析:(1)由直线和圆相切,求,再由离心率,得,从而求,进而求椭圆的方程;(2)要说明直线、的斜率之积是否为定值,关键是确定、两点的坐标.首先设直线的方程,并与椭圆联立,设,利用三点共线确定、两点的坐标的坐标,再计算直线、的斜率之积,这时会涉及到,结合根与系数的关系,研究其值是否为定值即可.
试题解析:(1),故 4分
(2)设,若直线与纵轴垂直,
则中有一点与重合,与题意不符,
故可设直线. 5分
将其与椭圆方程联立,消去得:
6分
7分
由三点共线可知,,, 8分
同理可得 9分
10分
而 11分
所以
故直线、的斜率为定值. 13分
考点:1、椭圆的标准方程和简单几何性质;2、直线和椭圆的位置关系.
科目:高中数学 来源: 题型:解答题
已知点是抛物线上不同的两点,点在抛物线的准线上,且焦点
到直线的距离为.
(I)求抛物线的方程;
(2)现给出以下三个论断:①直线过焦点;②直线过原点;③直线平行轴.
请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的两个焦点分别为,且点在椭圆C上,又.
(1)求焦点F2的轨迹的方程;
(2)若直线与曲线交于M、N两点,以MN为直径的圆经过原点,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线:和:的焦点分别为,交于两点(为坐标原点),且.
(1)求抛物线的方程;
(2)过点的直线交的下半部分于点,交的左半部分于点,点坐标为,求△面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的中心在原点,离心率为2,一个焦点为F(-2,0).
(1)求双曲线方程;
(2)设Q是双曲线上一点,且过点F,Q的直线l与y轴交于点M,若= 2,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的右焦点,长轴的左、右端点分别为,且.
(1)求椭圆的方程;
(2)过焦点斜率为()的直线交椭圆于两点,弦的垂直平分线与轴相交于点. 试问椭圆上是否存在点使得四边形为菱形?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点与分别在轴、轴上的动点满足:,动点满足.
(1)求动点的轨迹的方程;
(2)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点(为坐标原点);
(i)试判断直线与以为直径的圆的位置关系;
(ii)探究是否为定值?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆经过点,其左、右顶点分别是、,左、右焦点分别是、,(异于、)是椭圆上的动点,连接交直线于、两点,若成等比数列.
(1)求此椭圆的离心率;
(2)求证:以线段为直径的圆过点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com