已知双曲线的中心在原点,离心率为2,一个焦点为F(-2,0).
(1)求双曲线方程;
(2)设Q是双曲线上一点,且过点F,Q的直线l与y轴交于点M,若
= 2
,求直线l的方程.
科目:高中数学 来源: 题型:解答题
如图,椭圆
经过点P(1.
),离心率e=
,直线l的方程为x=4.![]()
(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为
.问:是否存在常数λ,使得
?若存在,求λ的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆
,经过椭圆
的右焦点F及上顶点B,过圆外一点
倾斜角为
的直线
交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
的方程为
,过原点作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,如此下去,一般地,过点
作斜率为
的直线与曲线
相交,另一个交点记为
,设点
(
).
(1)指出
,并求
与
的关系式(
);
(2)求
(
)的通项公式,并指出点列
,
, ,
, 向哪一点无限接近?说明理由;
(3)令
,数列
的前
项和为
,设
,求所有可能的乘积
的和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的左、右焦点分别
为
,其上顶点为
已知
是边长为
的正三角形.
(1)求椭圆
的方程;
(2)过点
任作一动直线
交椭圆
于
两点,记
.若在线段
上取一点
,使得
,当直线
运动时,点
在某一定直线上运动,求出该定直线的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,以原点为圆心、椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设
,过点
作与
轴不重合的直线
交椭圆于
、
两点,连结
、
分别交直线
于
、
两点.试问直线
、
的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(a>b>0),过点(0,1),且离心率为
.
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线l:x=2
与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,
恒为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点
是椭圆
的一个顶点,
的长轴是圆
的直径,
、
是过点
且互相垂直的两条直线,其中
交圆
于
、
两点,
交椭圆
于另一点
.![]()
(1)求椭圆
的方程;
(2)求
面积的最大值及取得最大值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比为
,
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,设点P是椭圆上的任意一点,若当
最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com