精英家教网 > 高中数学 > 题目详情

已知双曲线的中心在原点,离心率为2,一个焦点为F(-2,0).
(1)求双曲线方程;
(2)设Q是双曲线上一点,且过点F,Q的直线l与y轴交于点M,若= 2,求直线l的方程.

(1)
(2)y=±(x+2)或y=±(x+2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,椭圆经过点P(1.),离心率e=,直线l的方程为x=4.

(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为.问:是否存在常数λ,使得?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点).
(1)指出,并求的关系式();
(2)求)的通项公式,并指出点列, ,,  向哪一点无限接近?说明理由;
(3)令,数列的前项和为,设,求所有可能的乘积的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的左、右焦点分别
,其上顶点为已知是边长为的正三角形.
(1)求椭圆的方程;
(2)过点任作一动直线交椭圆两点,记.若在线段上取一点,使得,当直线运动时,点在某一定直线上运动,求出该定直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,过点作与轴不重合的直线交椭圆于两点,连结分别交直线两点.试问直线的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:(a>b>0),过点(0,1),且离心率为
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线lx=2x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点是椭圆的一个顶点,的长轴是圆的直径,是过点且互相垂直的两条直线,其中交圆两点,交椭圆于另一点.

(1)求椭圆的方程;
(2)求面积的最大值及取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比为
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,设点P是椭圆上的任意一点,若当最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案