如图,已知圆
,经过椭圆
的右焦点F及上顶点B,过圆外一点
倾斜角为
的直线
交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.![]()
(1)
; (2)
.
解析试题分析:(1)依据题意可求得F,B的坐标,求得c和b,进而求得a,则椭圆的方程可得;(2)设出直线l的方程,与椭圆方程联立消去,利用判别式大于0求得m的范围,设出C,D的坐标,利用韦达定理表示出x1+x2和x1x2,进而利用直线方程求得y1y2,表示出
和
,进而求得
的表达式,利用F在圆E的内部判断出
<0求得m的范围,最后综合可求得m的范围.
解:(1)∵圆G:
经过点F、B.
∴F(2,0),B(0,
), ∴
,
. 2分
∴
.故椭圆的方程为
. 4分
(2)解1:设直线
的方程为
.
由
消去
得
.
设
,
,则
,
, 6分
∴
.
∵
,
,
∴
=
=
. 10分
∵点F在圆G的外部,∴
, 即
,
解得
或
. 12分
由△=
,解得
.又
,
.
. 14分
解2:设直线
的方程为
.
由
消去
得
.
设
,
,则
,
, 6分
则CD的中点为
,
又![]()
所以圆G的半径长![]()
又右焦点F(2,0),所以![]()
因点F在圆G的外部,所以![]()
,整理得![]()
解得
或
. 12分
由△=
,解得
.又
,
.
. &nbs
科目:高中数学 来源: 题型:解答题
如图
为椭圆C:![]()
的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率
,
的面积为
.若点
在椭圆C上,则点
称为点M的一个“椭圆”,直线
与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.![]()
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点
的直线
,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的焦点为
,点
是椭圆
上的一点,
与
轴的交点
恰为
的中点,
.
(1)求椭圆
的方程;
(2)若点
为椭圆的右顶点,过焦点
的直线与椭圆
交于不同的两点
,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线
,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知
,
,
,
分别是椭圆
的四个顶点,△
是一个边长为2的等边三角形,其外接圆为圆
.
(1)求椭圆
及圆
的方程;
(2)若点
是圆
劣弧
上一动点(点
异于端点
,
),直线
分别交线段
,椭圆
于点
,
,直线
与
交于点
.
(ⅰ)求
的最大值;
(ⅱ)试问:
,
两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的两个焦点分别为
,且点
在椭圆C上,又
.
(1)求焦点F2的轨迹
的方程;
(2)若直线
与曲线
交于M、N两点,以MN为直径的圆经过原点,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知定点F(1,0),点
在
轴上运动,点
在
轴上,点![]()
为平面内的动点,且满足
,
.
(1)求动点
的轨迹
的方程;
(2)设点
是直线
:
上任意一点,过点
作轨迹
的两条切线
,
,切点分别为
,
,设切线
,
的斜率分别为
,
,直线
的斜率为
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的中心在原点,离心率为2,一个焦点为F(-2,0).
(1)求双曲线方程;
(2)设Q是双曲线上一点,且过点F,Q的直线l与y轴交于点M,若
= 2
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右焦点分别为
、
,短轴两个端点为
、
,且四边形
是边长为2的正方形.
(1)求椭圆方程;
(2)若
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
,证明:
为定值;
(3)在(2)的条件下,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com