精英家教网 > 高中数学 > 题目详情

 给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

(1) ; (2) 垂直.

解析试题分析:(1)由“椭圆C的一个焦点为,其短轴上的一个端点到F的距离为”知:从而可得椭圆的标准方程和“准圆”的方程;
(2)分两种情况讨论:①当中有一条直线斜率不存在;②直线斜率都存在.
对于①可直接求出直线的方程并判断其是不互相垂直;
对于②设经过准圆上点与椭圆只有一个公共点的直线为
与椭圆方程联立组成方程组消去得到关于的方程:
化简整理得:
而直线的斜率正是方程的两个根,从而
(1)
椭圆方程为
准圆方程为
(2)①当中有一条无斜率时,不妨设无斜率,
因为与椭圆只有一个共公点,则其方程为
方程为时,此时与准圆交于点
此时经过点(或)且与椭圆只有一个公共眯的直线是(或
(或),显然直线垂直;
同理可证方程为时,直线也垂直.
②当都有斜率时,设点其中
设经过点与椭圆只有一个公共点的直线为
则由消去,得

化简整理得:
因为,所以有
的斜率分别为,因为与椭圆只有一个公共点
所以满足上述方程
所以,即垂直,
综合①②知, 垂直.
考点:1、椭圆的标准方程;2、直线与圆锥曲线的综合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,椭圆经过点P(1.),离心率e=,直线l的方程为x=4.

(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为.问:是否存在常数λ,使得?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆交于两点,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,其短轴两端点为.
(1)求椭圆的方程;
(2)若是椭圆上关于轴对称的两个不同点,直线轴分别交于点.判断以为直径的圆是否过点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的斜率互为相反数,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点).
(1)指出,并求的关系式();
(2)求)的通项公式,并指出点列, ,,  向哪一点无限接近?说明理由;
(3)令,数列的前项和为,设,求所有可能的乘积的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点是椭圆的一个顶点,的长轴是圆的直径,是过点且互相垂直的两条直线,其中交圆两点,交椭圆于另一点.

(1)求椭圆的方程;
(2)求面积的最大值及取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆为坐标原点,椭圆的右准线与轴的交点是
(1)点在已知椭圆上,动点满足,求动点的轨迹方程;
(2)过椭圆右焦点的直线与椭圆交于点,求的面积的最大值

查看答案和解析>>

同步练习册答案