已知椭圆
的中心在原点
,焦点在
轴上,离心率为
,右焦点到右顶点的距离为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线![]()
与椭圆
交于
两点,是否存在实数
,使
成立?若存在,求
的值;若不存在,请说明理由.
(Ⅰ)
,(Ⅱ)不存在.
解析试题分析:(Ⅰ)求椭圆标准方程,关键利用待定系数法求出a,b. 由..及
,解得
,
.所以
.所以椭圆
的标准方程是
.(Ⅱ)存在性问题,一般从假设存在出发,建立等量关系,有解就存在,否则不存在. 条件
的实质是垂直关系,即
.所以
.
,![]()
把
代入椭圆C:
中,整理得
.整理得
,矛盾.
(Ⅰ)设椭圆
的方程为![]()
,半焦距为
.
依题意
解得
,
,所以
.
所以椭圆
的标准方程是
. .4分
(Ⅱ)不存在实数
,使
,证明如下:
把
代入椭圆C:
中,整理得
.
由于直线
恒过椭圆内定点
,所以判别式
.
设
,则
,
.
依题意,若
,平方得
.
即
,
整理得
,
所以![]()
![]()
,
整理得
,矛盾.
所以不存在实数
,使
. .14分
考点:椭圆标准方程,直线与椭圆位置关系
科目:高中数学 来源: 题型:解答题
过抛物线C:
上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,且直线AB过点(0,-1),求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
过点
,且离心率
.
(1)求椭圆C的方程;
(2)已知过点
的直线
与该椭圆相交于A、B两点,试问:在直线
上是否存在点P,使得
是正三角形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
是抛物线
上不同的两点,点
在抛物线
的准线
上,且焦点
到直线
的距离为
.
(I)求抛物线
的方程;
(2)现给出以下三个论断:①直线
过焦点
;②直线
过原点
;③直线
平行
轴.
请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的焦点为
,点
是椭圆
上的一点,
与
轴的交点
恰为
的中点,
.
(1)求椭圆
的方程;
(2)若点
为椭圆的右顶点,过焦点
的直线与椭圆
交于不同的两点
,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线
,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线
,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的两个焦点分别为
,且点
在椭圆C上,又
.
(1)求焦点F2的轨迹
的方程;
(2)若直线
与曲线
交于M、N两点,以MN为直径的圆经过原点,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的准线与x轴交于点M,过点M作圆
的两条切线,切点为A、B,
.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com