已知椭圆
的焦点为
,点
是椭圆
上的一点,
与
轴的交点
恰为
的中点,
.
(1)求椭圆
的方程;
(2)若点
为椭圆的右顶点,过焦点
的直线与椭圆
交于不同的两点
,求
面积的取值范围.
(1)
(2)![]()
解析试题分析:(1)根据已知分析可得点
横坐标为1,纵坐标为
,,即点
。法一:将
代入椭圆方程,结合
且
,解方程组可得
的值。法二:根据椭圆的定义求点
到两焦点的距离的和即为
,再根据关系式
求得
。(2)设过点
的直线
的斜率为
,显然
(注意讨论直线斜率存在与否)。当直线的斜率不存在时,直线方程为
,将
代入椭圆方程可得
的纵坐标,从而可得
,根据椭圆图像的对称性可知
,因此可得
。当直线斜率存在时设直线
的方程为
,将直线与椭圆方程联立,消去
(或
)得关于
的一元二次方程,从而可得根与系数的关系。根据弦长公式求
,再用点到线的距离公式求点
到直线
的距离
,所以
。最后根据基本不等式求其范围即可。
解:(1)因为
为
的中点,
为
的中点,
,
所以
,且
. 1分
所以
.
因为
,
所以
. 2分
因为
, 3分
所以
.
所以椭圆
的方程为
. 4分
(2)设过点
的直线
的斜率为
,显然
.
(1)当
不存在时,直线
的方程为
,
所以
.
因为![]()
![]()
科目:高中数学 来源: 题型:解答题
(13分)(2011•天津)设椭圆
+
=1(a>b>0)的左、右焦点分别为F1,F2.点P(a,b)满足|PF2|=|F1F2|.
(Ⅰ)求椭圆的离心率e;
(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+
=16相交于M,N两点,且|MN|=
|AB|,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为A,在x轴负半轴上有一点B,满足
三点的圆与直线
相切.
(1)求椭圆C的方程;
(2)过右焦点
作斜率为k的直线
与椭圆C交于M,N两点,线段MN的垂直平分线与x轴相交于点P(m,0),求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
经过点P(1.
),离心率e=
,直线l的方程为x=4.![]()
(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为
.问:是否存在常数λ,使得
?若存在,求λ的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
,直线
的方程为
,过右焦点
的直线
与椭圆交于异于左顶点
的
两点,直线
,
交直线
分别于点
,
.
(1)当
时,求此时直线
的方程;
(2)试问
,
两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点
,焦点在
轴上,离心率为
,右焦点到右顶点的距离为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线![]()
与椭圆
交于
两点,是否存在实数
,使
成立?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,其短轴两端点为
.
(1)求椭圆
的方程;
(2)若
是椭圆
上关于
轴对称的两个不同点,直线
与
轴分别交于点
.判断以
为直径的圆是否过点
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆
,经过椭圆
的右焦点F及上顶点B,过圆外一点
倾斜角为
的直线
交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(a>b>0),过点(0,1),且离心率为
.
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线l:x=2
与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,
恒为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com