在平面直角坐标系
中,已知定点F(1,0),点
在
轴上运动,点
在
轴上,点![]()
为平面内的动点,且满足
,
.
(1)求动点
的轨迹
的方程;
(2)设点
是直线
:
上任意一点,过点
作轨迹
的两条切线
,
,切点分别为
,
,设切线
,
的斜率分别为
,
,直线
的斜率为
,求证:
.
(1)
,(2)详见解析.
解析试题分析:(1)求动点轨迹方程,分四步。第一步,设所求动点坐标,设点
,
,
.第二步,建立等量关系,由
可知,点
是
的中点,所以
即
所以点
,
.所以
,
.由
,可得
,第三步,化简等量关系,即
.第四步,去杂或确定取值范围,本题就是
(2)证明三直线斜率关系,实质研究其坐标关系. 设点
,则过点
的直线
,联立方程
,整理得
.则
,化简得
.所以
.又
,故
.
【解】(1)设点
,
,
.
由
可知,点
是
的中点,
所以
即
所以点
,
.
所以
,
. 3分
由
,可得
,即
.
所以动点
的轨迹
的方程为
. 5分![]()
(2)设点
,
由于过点
的直线
与轨迹
:
相切,
联立方程
,整理得
. 7分
则
,
化简得
.
显然,
,
是关于
的方程
的两个根,所以
.
又
,故
.
所以命题得证. 10分
考点:轨迹问题的求解方法、直线和抛物线方程的位置关系
科目:高中数学 来源: 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为A,在x轴负半轴上有一点B,满足
三点的圆与直线
相切.
(1)求椭圆C的方程;
(2)过右焦点
作斜率为k的直线
与椭圆C交于M,N两点,线段MN的垂直平分线与x轴相交于点P(m,0),求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,其短轴两端点为
.
(1)求椭圆
的方程;
(2)若
是椭圆
上关于
轴对称的两个不同点,直线
与
轴分别交于点
.判断以
为直径的圆是否过点
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆
,经过椭圆
的右焦点F及上顶点B,过圆外一点
倾斜角为
的直线
交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两个焦点分别为
和
,离心率
.
(1)求椭圆
的方程;
(2)设直线
(
)与椭圆
交于
、
两点,线段
的垂直平分线交
轴于点
,当
变化时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
的方程为
,过原点作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,如此下去,一般地,过点
作斜率为
的直线与曲线
相交,另一个交点记为
,设点
(
).
(1)指出
,并求
与
的关系式(
);
(2)求
(
)的通项公式,并指出点列
,
, ,
, 向哪一点无限接近?说明理由;
(3)令
,数列
的前
项和为
,设
,求所有可能的乘积
的和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的左、右焦点分别
为
,其上顶点为
已知
是边长为
的正三角形.
(1)求椭圆
的方程;
(2)过点
任作一动直线
交椭圆
于
两点,记
.若在线段
上取一点
,使得
,当直线
运动时,点
在某一定直线上运动,求出该定直线的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(a>b>0),过点(0,1),且离心率为
.
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线l:x=2
与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,
恒为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率
,长轴的左右端点分别为
,
.
(1)求椭圆
的方程;
(2)设动直线
与曲线
有且只有一个公共点
,且与直线
相交于点
.问在
轴上是否存在定点
,使得以
为直径的圆恒过定点
,若存在,求出
点坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com