已知椭圆的离心率,长轴的左右端点分别为,.
(1)求椭圆的方程;
(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.
(1);(2)存在,
解析试题分析:(1)由已知,得,再根据离心率求,进而求,进而根据焦点位置求椭圆方程;(2)联立直线方程和椭圆方程,得关于的一元二次方程,由题意,列方程得,同时可求出切点坐标,再求,设轴上存在满足条件的点,以为直径的圆恒过定点等价于,列方程得,由题意该方程与无关,故,从而求得点坐标,本题还可以先从特殊值入手,确定定点的坐标,再证明以为直径的圆恒过定点.
试题解析:(1)由已知 2分
,
椭圆的方程为; 4分
(2),消去,得,则,可得,设切点,则,,故,又由,得,设在上存在定点,使得以为直径的圆恒过定点,,即 10分
,
对满足恒成立,
,
故在轴上存在定点,使得以为直径的圆恒过定点. 14分
考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、向量垂直的充要条件.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知定点F(1,0),点在轴上运动,点在轴上,点
为平面内的动点,且满足,.
(1)求动点的轨迹的方程;
(2)设点是直线:上任意一点,过点作轨迹的两条切线,,切点分别为,,设切线,的斜率分别为,,直线的斜率为,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形.
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)过右焦点作斜率为的直线交曲线于、两点,且,又点关于原点的对称点为点,试问、、、四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆E:的离心率为,过左焦点且斜率为的直线交椭圆E于A,B两点,线段AB的中点为M,直线:交椭圆E于C,D两点.
(1)求椭圆E的方程;
(2)求证:点M在直线上;
(3)是否存在实数k,使得三角形BDM的面积是三角形ACM的3倍?若存在,求出k的值;
若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且
(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:+y2=1(a>1)的上顶点为M(0,1),两条过M的动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求椭圆E的方程;
(2)若Rt△MAB面积的最大值为,求a;
(3)对于给定的实数a(a>1),动直线AB是否经过一定点?如果经过,求出定点坐标(用a表示);反之,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com