精英家教网 > 高中数学 > 题目详情

已知命题,命题:方程表示焦点在轴上的双曲线.
(1)命题为真命题,求实数的取值范围;
(2)若命题“”为真,命题“”为假,求实数的取值范围.

(1)(2).

解析试题分析:(1)焦点在x轴双曲线的充要条件;(2)分命题为真、命题为假和命题为假、命题为真两种情况求解
试题解析:(1)当命题为真时,由已知得,解得
∴当命题为真命题时,实数的取值范围是
(2)当命题为真时,由解得
由题意得命题中有一真命题、有一假命题
当命题为真、命题为假时,则
解得.
当命题为假、命题为真时,则无解.
∴实数的取值范围是.
考点:焦点在x轴双曲线的充要条件,四种媒体之间的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C:(a>b>0),过点(0,1),且离心率为
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线lx=2x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率,长轴的左右端点分别为
(1)求椭圆的方程;
(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比为
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,设点P是椭圆上的任意一点,若当最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线关于轴对称,它的顶点在坐标原点,点均在抛物线上.

(1)写出该抛物线的方程及其准线方程;
(2)当的斜率存在且倾斜角互补时,求的值及直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,F1F2分别为椭圆C的左、右两个焦点,AB为两个顶点,该椭圆的离心率为的面积为.

(1)求椭圆C的方程和焦点坐标;
(2)作与AB平行的直线交椭圆于PQ两点,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,

(1)求椭圆E的方程;
(2)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知是椭圆上不同的三点,在第三象限,线段的中点在直线上.

(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点在椭圆上(异于点)且直线PBPC分别交直线OA两点,证明为定值并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明:以PQ为直径的圆恒过y轴上某定点.

查看答案和解析>>

同步练习册答案