已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,
(1)求椭圆E的方程;
(2)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.
(1)(2)AB为直径的圆恒过这个定点(0,1).
解析试题分析:(1)求出抛物线的焦点得到椭圆的两个焦点(即C值),求其中一个焦点关于直线的对称点,再利用点点之间直线距离最短求出直线y=上到焦点F1,F2距离之和最小的点P的坐标(即为对称点与另一个焦点连线与直线y=的交点),即得椭圆上一点的坐标,便可求出a,b,c得到椭圆的标准方程.
(2)直线的斜率为k,通过联立方程式,韦达定理等用斜率k来建立圆的方程,进而判断关于参数k的圆是否经过定点(即是否有相应点的坐标使得参数k的系数为0即可)
试题解析:
(1)由抛物线的焦点可得:,点关于直线的对称点为
故,因此,椭圆方程为
(2)假设存在定点M,使以AB为直径的圆恒过这个点。
当AB轴时,以AB为直径的圆的方程为: ①
当AB轴时,以AB为直径的圆的方程为: ②
由①②知定点M。下证:以AB为直径的圆恒过定点M。设直线,代入,有。设,则。
则,
在y轴上存在定点M,使以AB为直径的圆恒过这个定点.
考点:椭圆 定点问题
科目:高中数学 来源: 题型:解答题
如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且
(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的由顶点为A,右焦点为F,直线与x轴交于点B且与直线交于点C,点O为坐标原点,,过点F的直线与椭圆交于不同的两点M,N.
(1)求椭圆的方程;
(2)求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点.
(1)求椭圆的方程;
(2)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的离心率e=,一条准线方程为x=
(1)求椭圆C的方程;
(2)设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.
①当直线OG的倾斜角为60°时,求△GOH的面积;
②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:+y2=1(a>1)的上顶点为M(0,1),两条过M的动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求椭圆E的方程;
(2)若Rt△MAB面积的最大值为,求a;
(3)对于给定的实数a(a>1),动直线AB是否经过一定点?如果经过,求出定点坐标(用a表示);反之,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(1)求椭圆C的标准方程。
(2)过点Q(0,)的直线与椭圆交于A、B两点,与直线y=2交于点M(直线AB不经过P点),记PA、PB、PM的斜率分别为k1、k2、k3,问:是否存在常数,使得若存在,求出名的值:若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com