已知椭圆
的由顶点为A,右焦点为F,直线
与x轴交于点B且与直线
交于点C,点O为坐标原点,
,过点F的直线
与椭圆交于不同的两点M,N.![]()
(1)求椭圆的方程;
(2)求
的面积的最大值.
(1)
;(2)![]()
解析试题分析:(1)由直线
与x轴交于点B且与直线
交于点C,
.即可得到关于
的两个方程.从而得到结论.
(2)首先考虑直线MN垂直于x轴的情况,求出
的面积.由(1)得到的方程联立直线方程,消去y得到一个关于x的方程,由韦达定理写出两个等式.由弦长公式即点到直线的距离公式,即可求出
的面积的.再利用最值的求法,即可的结论.
试题解析:(1) 因为
,
,则
且
,得
则
椭圆方程为:![]()
(2) ①当直线
与x轴不垂直时,设直线
,![]()
则
消去
得
,
所以
记
为
到
的距离,则
,
所以
=![]()
![]()
② 当
轴时,
,所以
的面积的最大值为
考点:1.待定系数法求椭圆的方程.2.韦达定理.3.弦长公式.4.点到直线的距离公式.
科目:高中数学 来源: 题型:解答题
如图,已知平面内一动点
到两个定点
、
的距离之和为
,线段
的长为
.![]()
(1)求动点
的轨迹
的方程;
(2)过点
作直线
与轨迹
交于
、
两点,且点
在线段
的上方,
线段
的垂直平分线为
.
①求
的面积的最大值;
②轨迹
上是否存在除
、
外的两点
、
关于直线
对称,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知A、B、C是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且
,|BC|=2|AC|.![]()
(1)求椭圆E的方程;
(2)在椭圆E上是否存点Q,使得
?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.
(3)过椭圆E上异于其顶点的任一点P,作
的两条切线,切点分别为M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线关于
轴对称,它的顶点在坐标原点,点
、
、
均在抛物线上.![]()
(1)写出该抛物线的方程及其准线方程;
(2)当
与
的斜率存在且倾斜角互补时,求
的值及直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆
的两焦点
、
,离心率为
,直线
:
与椭圆
交于
两点,点
在
轴上的射影为点
.![]()
(1)求椭圆
的标准方程;
(2)求直线
的方程,使
的面积最大,并求出这个最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是椭圆E:
的两个焦点,抛物线
的焦点为椭圆E的一个焦点,直线y=
上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,![]()
(1)求椭圆E的方程;
(2)如图,过点
的动直线
交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的右焦点为
,点
在椭圆上.![]()
(1)求椭圆的方程;
(2)点
在圆
上,且
在第一象限,过
作圆
的切线交椭圆于
,
两点,问:△
的周长是否为定值?如果是,求出定值;如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆C0:
=1(a>b>0,a、b为常数),动圆C1:x2+y2=
,b<t1<a.点A1、A2分别为C0的左、右顶点,C1与C0相交于A、B、C、D四点.![]()
(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2=
与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知过曲线
上任意一点
作直线
的垂线,垂足为
,且
.
⑴求曲线
的方程;
⑵设
、
是曲线
上两个不同点,直线
和
的倾斜角分别为
和
,当
变化且
为定值
时,证明直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com