已知过曲线上任意一点作直线的垂线,垂足为,且.
⑴求曲线的方程;
⑵设、是曲线上两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.
⑴
⑵当时,直线恒过定点,当时直线恒过定点.
解析试题分析:⑴要求曲线方程,但是不知道是哪种曲线,所以只能设点.根据,转化为求曲线方程即可;
⑵要证明直线恒过定点,必须得有直线方程,所以首先设出直线方程.又因为两个角是直线和的倾斜角,所以点也得设出来.利用韦达定理,然后讨论的范围变化,证明并得出定点坐标.
试题解析:⑴设,则,由得,;
即;所以轨迹方程为;
⑵设,由题意得(否则)且,
所以直线的斜率存在,设其方程为,
因为在抛物线上,所以,
将与联立消去,得;
由韦达定理知①;
(1)当时,即时,,所以,
,所以.由①知:,所以
因此直线的方程可表示为,即.
所以直线恒过定点
(2)当时,由,得==
将①式代入上式整理化简可得:,所以,
此时,直线的方程可表示为,
即,所以直线恒过定点;
所以由(1)(2)知,当时,直线恒过定点,
当时直线恒过定点. 12分
考点:相关点法求曲线方程;分类讨论.
科目:高中数学 来源: 题型:解答题
已知椭圆的由顶点为A,右焦点为F,直线与x轴交于点B且与直线交于点C,点O为坐标原点,,过点F的直线与椭圆交于不同的两点M,N.
(1)求椭圆的方程;
(2)求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆经过点,且两焦点与短轴的两个端点的连线构成一正方形.
(1)求椭圆的方程;
(2)直线与椭圆交于,两点,若线段的垂直平分线经过点,求
(为原点)面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(1)求椭圆C的标准方程。
(2)过点Q(0,)的直线与椭圆交于A、B两点,与直线y=2交于点M(直线AB不经过P点),记PA、PB、PM的斜率分别为k1、k2、k3,问:是否存在常数,使得若存在,求出名的值:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的焦点在x轴上,两个顶点间的距离为2,焦点到渐近线的距离为.
(1)求双曲线的标准方程;
(2)写出双曲线的实轴长、虚轴长、焦点坐标、离心率、渐近线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.
(1)求圆心P的轨迹方程;
(2)若P点到直线y=x的距离为,求圆P的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com