如图,抛物线关于轴对称,它的顶点在坐标原点,点、、均在抛物线上.
(1)写出该抛物线的方程及其准线方程;
(2)当与的斜率存在且倾斜角互补时,求的值及直线的斜率.
(1)故所求抛物线的方程是,准线方程是;(2).
解析试题分析:(I)设出抛物线的方程,把点P代入抛物线求得p则抛物线的方程可得,进而求得抛物线的准线方程.
(2)设直线PA的斜率为,直线PB的斜率为,则可分别表示和,根据倾斜角互补可知,进而求得的值,把A,B代入抛物线方程两式相减后即可求得直线AB的斜率.
试题解析:(I)由已知条件,可设抛物线的方程为
因为点在抛物线上,所以,得. 2分
故所求抛物线的方程是, 准线方程是. 4分
(2)设直线的方程为,
即:,代入,消去得:
. 5分
设,由韦达定理得:,即:. 7分
将换成,得,从而得:, 9分
直线的斜率. 12分.
考点:抛物线的应用.
科目:高中数学 来源: 题型:解答题
设抛物线:的准线与轴交于点,焦点为;椭圆以和为焦点,离心率.设是与的一个交点.
(1)求椭圆的方程.
(2)直线过的右焦点,交于两点,且等于的周长,求的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)过右焦点作斜率为的直线交曲线于、两点,且,又点关于原点的对称点为点,试问、、、四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且
(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的短半轴长为,动点在直线(为半焦距)上.
(1)求椭圆的标准方程;
(2)求以为直径且被直线截得的弦长为的圆的方程;
(3)设是椭圆的右焦点,过点作的垂线与以为直径的圆交于点,
求证:线段的长为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的由顶点为A,右焦点为F,直线与x轴交于点B且与直线交于点C,点O为坐标原点,,过点F的直线与椭圆交于不同的两点M,N.
(1)求椭圆的方程;
(2)求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的离心率e=,一条准线方程为x=
(1)求椭圆C的方程;
(2)设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.
①当直线OG的倾斜角为60°时,求△GOH的面积;
②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆经过点,且两焦点与短轴的两个端点的连线构成一正方形.
(1)求椭圆的方程;
(2)直线与椭圆交于,两点,若线段的垂直平分线经过点,求
(为原点)面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com