设抛物线
:
的准线与
轴交于点
,焦点为
;椭圆
以
和
为焦点,离心率
.设
是
与
的一个交点.![]()
(1)求椭圆
的方程.
(2)直线
过
的右焦点
,交
于
两点,且
等于
的周长,求
的方程.
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
,直线
的方程为
,过右焦点
的直线
与椭圆交于异于左顶点
的
两点,直线
,
交直线
分别于点
,
.
(1)当
时,求此时直线
的方程;
(2)试问
,
两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两个焦点分别为
和
,离心率
.
(1)求椭圆
的方程;
(2)设直线
(
)与椭圆
交于
、
两点,线段
的垂直平分线交
轴于点
,当
变化时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的左、右焦点分别
为
,其上顶点为
已知
是边长为
的正三角形.
(1)求椭圆
的方程;
(2)过点
任作一动直线
交椭圆
于
两点,记
.若在线段
上取一点
,使得
,当直线
运动时,点
在某一定直线上运动,求出该定直线的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
,圆C:
与椭圆E:
有一个公共点
,
分别是椭圆的左、右焦点,直线
与圆C相切.![]()
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(a>b>0),过点(0,1),且离心率为
.
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线l:x=2
与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,
恒为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知平面内一动点
到两个定点
、
的距离之和为
,线段
的长为
.![]()
(1)求动点
的轨迹
的方程;
(2)过点
作直线
与轨迹
交于
、
两点,且点
在线段
的上方,
线段
的垂直平分线为
.
①求
的面积的最大值;
②轨迹
上是否存在除
、
外的两点
、
关于直线
对称,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,以原点
为圆心,椭圆的短半轴长为半径的圆与直线
相切。
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交于
、
两点,且
,试判断
的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线关于
轴对称,它的顶点在坐标原点,点
、
、
均在抛物线上.![]()
(1)写出该抛物线的方程及其准线方程;
(2)当
与
的斜率存在且倾斜角互补时,求
的值及直线
的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com