精英家教网 > 高中数学 > 题目详情

已知椭圆的短半轴长为,动点在直线为半焦距)上.
(1)求椭圆的标准方程;
(2)求以为直径且被直线截得的弦长为的圆的方程;
(3)设是椭圆的右焦点,过点的垂线与以为直径的圆交于点
求证:线段的长为定值,并求出这个定值.

(1),(2),(3)

解析试题分析:(1)求椭圆标准方程,基本方法为待定系数法.由题意得,因此可解得.(2)圆的弦长问题,通常化为直角三角形,即半径、半弦长、圆心到直线距离构成一个直角三角形. 圆心为,圆心到直线的距离,因此,所求圆的方程为. (3)涉及定值问题,一般通过计算,以算代证.本题有两种算法,一是利用射影定理,只需求出点上射影的坐标,即由两直线方程,因此.二是利用向量坐标表示,即设,根据两个垂直,消去参数t,确定.
试题解析:(1)由点在直线上,得
, ∴. 从而.                 2分
所以椭圆方程为.                            4分
(2)以为直径的圆的方程为
. 其圆心为,半径.    6分
因为以为直径的圆被直线截得的弦长为
所以圆心到直线的距离
所以,解得.所求圆的方程为.  9分
(3)方法一:由平几知:
直线,直线


所以线段的长为定值.                                     13分
方法二:设



所以,为定值.                             13分
考点:椭圆方程,圆的弦长,定值问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点,圆C:与椭圆E:有一个公共点分别是椭圆的左、右焦点,直线与圆C相切.

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点在双曲线上,且双曲线的一条渐近线的方程是
(1)求双曲线的方程;
(2)若过点且斜率为的直线与双曲线有两个不同交点,求实数的取值范围;
(3)设(2)中直线与双曲线交于两个不同点,若以线段为直径的圆经过坐标原点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知ABC是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且,|BC|=2|AC|.

(1)求椭圆E的方程;
(2)在椭圆E上是否存点Q,使得?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.
(3)过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,直线相交于两点,轴、轴分别相交于两点,为坐标原点.
(1)若直线的方程为,求外接圆的方程;
(2)判断是否存在直线,使得是线段的两个三等分点,若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线关于轴对称,它的顶点在坐标原点,点均在抛物线上.

(1)写出该抛物线的方程及其准线方程;
(2)当的斜率存在且倾斜角互补时,求的值及直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

知椭圆的两焦点,离心率为,直线与椭圆交于两点,点轴上的射影为点

(1)求椭圆的标准方程;
(2)求直线的方程,使的面积最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为,点在椭圆上.

(1)求椭圆的方程;
(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,问:△的周长是否为定值?如果是,求出定值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.

(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.

查看答案和解析>>

同步练习册答案