已知椭圆的右焦点为,点在椭圆上.
(1)求椭圆的方程;
(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,问:△的周长是否为定值?如果是,求出定值;如果不是,说明理由.
(1);(2)详见解析
解析试题分析:(1)根据点在曲线上可代入方程,再根据椭圆中,解方程组可得的值。从而可得椭圆方程。法二,还可根据椭圆的定义椭圆上点到两焦点的距离为直接求得,再根据求。(2)设的方程为,根据与圆相切可得间的关系。再将直线与椭圆方程联立消掉整理为关于的一元二次方程,可得根与系数的关系。由直线与圆锥曲线的相交弦公式可得,再根据两点间距离可求,将三边长相加,根据前边得到的间的关系问题即可得证。
试题解析:(1)『解法1』:
(1)由题意,得,2分
解得4分
∴椭圆方程为.5分
『解法2』:
右焦点为,
左焦点为,点在椭圆上
所以,
所以椭圆方程为5分
(2)『解法1』:
由题意,设的方程为
∵与圆相切
∴,即6分
由,得7分
设,则,8分
∴
10分
又
∴11分
∴(定值)12分
『解法2』:
设,
8分
连接,由相切条件知:
10分
同理可求
所以为定值.12分
考点:1椭圆的标准方程;2直线和圆锥曲线的相交弦问题;3直线和圆的位置关系。
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.
(1)求椭圆的标准方程;
(2)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的短半轴长为,动点在直线(为半焦距)上.
(1)求椭圆的标准方程;
(2)求以为直径且被直线截得的弦长为的圆的方程;
(3)设是椭圆的右焦点,过点作的垂线与以为直径的圆交于点,
求证:线段的长为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的由顶点为A,右焦点为F,直线与x轴交于点B且与直线交于点C,点O为坐标原点,,过点F的直线与椭圆交于不同的两点M,N.
(1)求椭圆的方程;
(2)求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线.
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过点且相互垂直的两条直线,抛物线与交于点与交于点.
证明:无论如何取直线,都有为一常数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的离心率e=,一条准线方程为x=
(1)求椭圆C的方程;
(2)设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.
①当直线OG的倾斜角为60°时,求△GOH的面积;
②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点M、N.
(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与轴交于点R,S,O为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的焦点在x轴上,两个顶点间的距离为2,焦点到渐近线的距离为.
(1)求双曲线的标准方程;
(2)写出双曲线的实轴长、虚轴长、焦点坐标、离心率、渐近线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com