已知抛物线
.
(1)若圆心在抛物线
上的动圆,大小随位置而变化,但总是与直线
相切,求所有的圆都经过的定点坐标;
(2)抛物线
的焦点为
,若过
点的直线与抛物线相交于
两点,若
,求直线
的斜率;
(3)若过
点且相互垂直的两条直线
,抛物线与
交于点
与
交于点
.
证明:无论如何取直线
,都有
为一常数.
(1)
;(2)
;(3)证明见解析.
解析试题分析:(1)本题考查抛物线的定义,由于直线
是已知抛物线的的准线,而圆心在抛物线上的圆既然与准线相切,则它必定过抛物线的焦点,所以所有的圆必过抛物线的焦点,即定点
;(2)这是直线与抛物线相交问题,设如设
,
,则
,两式相减有
,则
,下面就是要求
或
,为此,我们设直线
方程为
,把它与抛物线方程联立方程组,消去
,就可得到关于
的方程,可得
,
,只是里面含有
,这里解题的关键就是已知条件
怎样用?实际上有这个条件可得
,这样与刚才的
,
合起来就能求出
;(3)由于直线
过焦点
,因此弦长
可用抛物线的定义来求,设
方程为
,
,同理
,直线计算,可证结论.
试题解析:(1) 由定义可得定点(1,0);(4分)
(2)设
,由
,得
(5分)
由方程组
,得![]()
得
(7分)
联立上述方程求得:
(9分)
(3) 由
,得
(11分)
则
,(12分)
同理:
,(14分)
因此
为常数.(16分)
考点:(1)抛物线的定义;(2)直线和与抛物线相交与向量的应用;(3)圆锥曲线综合问题.
科目:高中数学 来源: 题型:解答题
设椭圆C1:
的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当
时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
,直线
与
相交于
、
两点,
与
轴、
轴分别相交于
、
两点,
为坐标原点.
(1)若直线
的方程为
,求
外接圆的方程;
(2)判断是否存在直线
,使得
、
是线段
的两个三等分点,若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆
的两焦点
、
,离心率为
,直线
:
与椭圆
交于
两点,点
在
轴上的射影为点
.![]()
(1)求椭圆
的标准方程;
(2)求直线
的方程,使
的面积最大,并求出这个最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的右焦点为
,点
在椭圆上.![]()
(1)求椭圆的方程;
(2)点
在圆
上,且
在第一象限,过
作圆
的切线交椭圆于
,
两点,问:△
的周长是否为定值?如果是,求出定值;如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设双曲线C:
(a>0,b>0)的一个焦点坐标为(
,0),离心率
, A、B是双曲线上的两点,AB的中点M(1,2).
(1)求双曲线C的方程;
(2)求直线AB方程;
(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线C上动点P(x,y)到定点F1(
,0)与定直线l1∶x=
的距离之比为常数
.
(1)求曲线C的轨迹方程;
(2)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求
·
的最小值,并求此时圆T的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F1、F2是椭圆
=1(a>b>0)的左、右焦点,点M在x轴上,且
=![]()
,过点F2的直线与椭圆交于A、B两点,且AM⊥x轴,
·
=0.![]()
(1)求椭圆的离心率;
(2)若△ABF1的周长为
,求椭圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com