已知椭圆经过点,一个焦点为.
(1)求椭圆的方程;
(2)若直线与轴交于点,与椭圆交于两点,线段的垂直平分线与轴交于点,求的取值范围.
(1)椭圆的方程是;(2)的取值范围为.
解析试题分析:(1)求椭圆的方程,已知椭圆经过点,一个焦点为,故可用待定系数法,利用焦点为可得,利用过点,可得,再由,即可解出,从而得椭圆的方程;(2)求的取值范围,由弦长公式可求得线段的长,因此可设,由得,,则是方程的两根,有根与系数关系,得,,由弦长公式求得线段的长,求的长,需求出的坐标,直线与轴交于点,可得,线段的垂直平分线与轴交于点,故先求出线段的中点坐标,写出线段的垂直平分线方程,令,既得点的坐标,从而得的长,这样就得的取值范围.
试题解析:(1)由题意得解得,.
所以椭圆的方程是. 4分
(2)由得.
设,则有,,
.所以线段的中点坐标为,
所以线段的垂直平分线方程为.
于是,线段的垂直平分线与轴的交点,又点,
所以.
又.
于是,.
因为,所以.所以的取值范围为. 14分
考点:求椭圆的方程,直线与椭圆位置关系,二次曲线范围问题.
科目:高中数学 来源: 题型:解答题
我们将不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点称为切点.解决下列问题:
已知抛物线上的点到焦点的距离等于4,直线与抛物线相交于不同的两点、,且(为定值).设线段的中点为,与直线平行的抛物线的切点为..
(1)求出抛物线方程,并写出焦点坐标、准线方程;
(2)用、表示出点、点的坐标,并证明垂直于轴;
(3)求的面积,证明的面积与、无关,只与有关.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知、、是长轴长为的椭圆上的三点,点是长轴的一个端点,过椭圆中心,且,.
(1)求椭圆的方程;
(2)在椭圆上是否存点,使得?若存在,有几个(不必求出点的坐标),若不存在,请说明理由;
(3)过椭圆上异于其顶点的任一点,作圆的两条线,切点分别为、,,若直线 在轴、轴上的截距分别为、,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为,右焦点为(,0).
(1)求椭圆的方程;
(2)若过原点作两条互相垂直的射线,与椭圆交于,两点,求证:点到直线的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线.
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过点且相互垂直的两条直线,抛物线与交于点与交于点.
证明:无论如何取直线,都有为一常数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(为坐标原点),当时,求实数的取值范围?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的焦距为2,且过点.
(1)求椭圆C的方程;
(2)设椭圆C的左右焦点分别为,,过点的直线与椭圆C交于两点.
①当直线的倾斜角为时,求的长;
②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com