精英家教网 > 高中数学 > 题目详情

已知点在双曲线上,且双曲线的一条渐近线的方程是
(1)求双曲线的方程;
(2)若过点且斜率为的直线与双曲线有两个不同交点,求实数的取值范围;
(3)设(2)中直线与双曲线交于两个不同点,若以线段为直径的圆经过坐标原点,求实数的值.

(1);(2);(3).

解析试题分析:(1)要求双曲线的标准方程,必须找到关于的两个等式,题中一条渐近线方程为,说明,这是一个等式,点在双曲线上,那么此点坐标适合双曲线方程,代入进去又可得到一个等式,这样可解得;(2)直线与双曲线有两个不同的交点,直接把直线方程与双曲线方程联立方程组,此方程组有两解,方法是消去一个元,得到关于的二次方程,此方程是二次方程有两个不等的实根,则;(3)题设条件说明,如果设,则有可用表示出来,而在(2)中可用表示出来,代入刚才的等式,得到的方程,可解得
试题解析:(1)由题知,有
解得
因此,所求双曲线的方程是
(2)∵直线过点且斜率为
∴直线
联立方程组
又直线与双曲线有两个不同交点,

解得
(3)设交点为,由(2)可得
又以线段为直径的圆经过坐标原点,
因此,为坐标原点).
于是,
,解得
满足,且
所以,所求实数
考点:(1)双曲线的标准方程;(2)直线与双曲线有两个交点问题;(3)两直线垂直与圆锥网线综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆,过点且离心率为.
求椭圆的方程;
已知是椭圆的左右顶点,动点满足,连接角椭圆于点,在轴上是否存在异于点的定点,使得以为直径的圆经过直线和直线的交点,若存在,求出点,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)
已知椭圆C:+=1的离心率为,左焦点为F(-1,0),
(1) 设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;
(2)椭圆C上是否存在三点PEG,使得SOPESOPGSOEG=?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.
 
(1)求椭圆的标准方程;
(2)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.

(1)若直线PQ过定点,求点A的坐标;
(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)过右焦点作斜率为的直线交曲线两点,且,又点关于原点的对称点为点,试问四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点,且,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的短半轴长为,动点在直线为半焦距)上.
(1)求椭圆的标准方程;
(2)求以为直径且被直线截得的弦长为的圆的方程;
(3)设是椭圆的右焦点,过点的垂线与以为直径的圆交于点
求证:线段的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图;.已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点MN.

(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于MN的任意一点,且直线MPNP分别与轴交于点RSO为坐标原点. 试问;是否存在使最大的点P,若存在求出P点的坐标,若不存在说明理由.

查看答案和解析>>

同步练习册答案